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Abstract: In this paper, we consider the -charts for monitoring the high-quality 
processes considering the cumulative counts of conforming (CCC) items up to 
the rth non-conforming one. But the charts perform poorly in detection of small 
downward shifts in the fraction non-conforming because of their undesirable 
ARL-biased property. In this paper, we eliminate the ARL-biasedness property 
and propose the ARL-unbiased charts using the notion of uniformly most 
powerful unbiased (UMPU) test to ensure that a user will get an OOC signal 
more quickly than a false alarm for the shifts in both upward and downward 
directions. The performance of the proposed chart is also compared with the 
existing ARL-unbiased CCC chart and it is found that the former has an 
improved ability of detecting shifts in the fraction non-conforming over the 
latter. An illustrative example is given and a summary and conclusions are 
offered. 

Keywords: average run length; ARL; ARL-unbiased; control chart; high-yield 
processes; in-control performance; out-of-control performance; geometric 
distribution; fraction non-conforming; uniformly most powerful unbiased; 
UMPU; UMPU test. 

Reference to this paper should be made as follows: Kumar, N. and Singh, R.K. 
(2022) ‘Design and implementation of ARL-unbiased CCCr-chart for 
monitoring high-yield processes’, Int. J. Quality Engineering and Technology, 
Vol. 8, No. 4, pp.351–365. 

Biographical notes: Nirpeksh Kumar received his Master’s and PhD in 
Statistics from the University of Allahabad, Allahabad, India. He was awarded 
with the SARChI Postdoctoral Fellowship at the Department of Statistics, 
University of Pretoria, South Africa. He is currently an Associate Professor at 
the Department of Statistics, Banaras Hindu University, Varanasi (BHU), India. 
He has published papers in numerous accredited peer-reviewed journals and 
presented research at several national and international conferences. His 
research interests include statistical outlier detection, statistical process/quality 
control, and time series analysis. 



   

 

   

   
 

   

   

 

   

   352 N. Kumar and R.K. Singh    
 

    
 
 

   

   
 

   

   

 

   

       
 

Ranjeet Kumar Singh received his MSc in Statistics from the Department of 
Statistics, Banaras Hindu University (BHU) in 2015. He is a PhD student in the 
Department of Statistics, BHU. He is currently an Adjunct Faculty at the 
Department of Mathematics, Adamas University, Kolkata, India. His research 
interest includes statistical process/quality control. 

 

1 Introduction 

The attribute control charts play a significant role in monitoring processes with several 
advantages over the variable control charts. For example, in the most manufacturing and 
service industries, numerous quality characteristics need to be analysed simultaneously 
and the attribute control charts could monitor them all together at a fraction of the cost 
(see, Chapter 8, Mitra, 2016). Among them, the p, c, np-charts are widely used and 
consider the number of non-conforming items in a sample or non-conformities in the 
inspection unit as the quality characteristic. However, in monitoring high-yield processes 
(also known as ‘nearly’ zero-defect processes), they are found less useful due to several 
reasons, for example, increased false alarm rate (FAR), physically meaningless control 
limits and failure in detecting decrements in fraction non-conforming (Kaminsky et al., 
1992; Xie and Goh, 1993; Xie et al., 1999, 2000). The production or transactional 
processes which produce non-conforming items or defectives at a very low rate, say, 
parts per millions or billions are termed as high-yield processes (Xie et al., 2002; 
Montgomery, 2019), which could ultimately approach the states of zero defect (Golbafian 
et al., 2017). Such processes are encountered, for example, in manufacturing of printed 
circuits (Wang, 2009), filling process in the manufacture of low voltage liquid crystal 
display units (Chan et al., 2003), automated manufacturing processes, and in healthcare 
surveillance where infrequent events such as medical errors occur (Acosta-Mejia, 2012). 

For efficient monitoring of the high-yield processes, it has been suggested to consider 
the count of conforming items until the occurrence of non-conforming one as the quality 
characteristic (Calvin, 1983). Based on this idea, the CCC-chart is proposed to monitor 
the high-yield processes (Goh, 1987). Since then, several authors including Bourke 
(1991), Xie and Goh (1992), Chang and Gan (2001), and Chen (2009) have used the 
CCC-chart in monitoring high-yield processes. It is worth to note that Xie et al. (2010) 
used the same idea to monitor the continuous production processes. Due to its worthwhile 
contribution in monitoring high-yield processes, the efforts are made to enhance its 
ability of early detection of an out-of-control (OOC) signal, thus the CCCr-charts (r ∈ 1, 
2, …) are proposed (see Ohta et al., 2001; Kudo et al., 2004; Schwertman, 2005; Albers, 
2010; Zhang et al., 2019). The CCCr-charts monitor the cumulative count of conforming 
items until the rth non-conforming item is observed. The CCCr-charts are also known as 
the negative binomial charts because the quality characteristic follows a negative 
binomial distribution (Albers, 2010). Note that the CCC-chart (also known as geometric 
chart) is a particular case of the CCCr-chart when r = 1. The CCCr-charts have been well 
studied by several authors including Ohta et al. (2001), Kudo et al. (2004), Schwertman 
(2005) and Albers (2010) and they found that the CCCr-charts (r > 1) outperform the 
CCC-chart. Recently, Joekes et al. (2016) proposed two kinds of CCCr-chart for 
monitoring an injection moulding process and compared their performances. We should 
mention here that the choice of r is crucial in designing the CCCr because on one hand it 
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requires to wait for a longer time to observe the rth non-conforming item, but on the other 
hand the sensitivity of the chart increases as r increases (see Chan et al., 2003). Many 
authors including Schwertman (2005) and Albers (2010) have suggested to take the value 
of r up to 4 or 5. 

Very often, the control chart’s performance is assessed by the most popular metric 
which is the average run length (ARL). It is defined as the expected number of charting 
points plotted on the control chart until an OOC signal is observed. Importantly, two 
properties are desirable for any control chart: 

1 the OOC ARL values should be less than the in-control (IC) ARL value for every 
shift in the process so that the chart can produce an OOC signal more quickly than it 
raises a false alarm 

2 the IC ARL value should achieve exactly a pre-specified value of IC ARL. 

The control chart possessing these properties is termed as the ARL-unbiased chart, 
otherwise it is called the ARL-biased. The ARL-biased chart is usually not welcomed in 
the SPC literature because the corresponding ARL function does not achieve its 
maximum at the IC parameter value. This implies that the ARL-biased chart takes a 
longer time to detect the changes in the process parameter than it takes to give a false 
alarm. Therefore, it is worth to eliminate the bias in the ARL-function to ensure a more 
balanced guard against both decrease and increase in the process parameter. 

Note that the ARL-biased charts are encountered in practice when the quality 
characteristic has skewed distribution (Lowry at al., 1995). For the quality characteristic 
of continuous nature, the chart can be designed easily using the methods of calculus. 
Therefore, most of the associated work has been focused on the control chart where the 
quality characteristic is absolutely continuous in nature. These include the ARL-unbiased 
exponential and tr-charts for monitoring times to events (Zhang et al., 2006; Cheng and 
Chen, 2011; Kumar et al., 2017; Kumar and Baranwal, 2019; Kumar, 2020), the ARL-
unbiased S2-charts for monitoring the dispersion in normal processes (Pignatiello et al., 
1995; Acosta-Mejia and Pignatiello, 2000; Knoth, 2010; Uhlmann, 2013; Guo and Wang, 
2015). Unlike the ARL-unbiased chart for the continuous quality characteristic, to design 
the ARL-unbiased chart is rather intricate when the quality characteristic is of discrete 
nature. Hence, the initial work was focused on designing the near-maximal and nearly 
ARL-unbiased control charts such as np-chart proposed by Acosta-Mejia (1999), 
geometric chart designed by Zhang et al. (2004) and CCC-chart under the group 
inspection by Zhang et al. (2012). Recently, Knoth and Morais (2015) established a 
relationship between the ARL-unbiased chart and the notion of uniformly most powerful 
unbiased (UMPU) tests (see also, Cox and Hinkley, 1979; Zhang et al., 2004). Given this 
relationship, Paulino et al. (2016) and Morais (2016) proposed the ARL-unbiased design 
for the c-chart and np-chart, respectively. Following the same line of arguments, Morais 
(2017) proposed the ARL-unbiased CCC-chart and CCCG-chart (the CCC-chart under 
group inspection) respectively. 

As it was stated earlier that the charting statistic for the CCCr chart follows a negative 
binomial distribution which is skewed in nature. Thus, the existing CCCr chart based on 
an equal-tail probability approach is ARL-biased. The objective of this paper is to 
eliminate the bias in the ARL function of the CCCr chart and compare its performance 
with the existing ARL-unbiased CCC chart. In order to design the ARL-unbiased CCCr, 
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we follow Morais (2017) approach based on the UMPU test with the randomisation 
probabilities. 

Rest of the paper is organised as follows. Section 2 provides an overview of the 
CCCr-chart. Section 3 discusses the ARL-unbiased design of CCCr-chart. In Section 4, 
the performance of the proposed ARL-unbiased CCCr-chart is examined. Numerical 
comparisons with the ARL-unbiased CCC-chart are also provided in the same section. 
An example is given illustrating the practical implementation of the proposed chart in 
Section 5, and concluding remarks are provided in Section 6. 

2 The CCCr control chart 

Recall that the CCCr-chart detects a change in the fraction non-conforming, say, p by 
monitoring a decrease or an increase in the number of conforming items until the rth  
non-conforming item is produced. Let X denote the number of cumulative count of the 
conforming items until the process produces the rth non-conforming item. Clearly, the 
random variable X follows a negative binomial distribution with parameters r ∈ {1, 2, 
…} and p ∈ (0, 1). 

The probability mass function of X is given by 

1
( ) [ ] (1 ) , 1, 2, ; (0, 1),

1
−− 

= = = − = + + ∈ − 
r x r

p p
x

P x P X x p p x r r r p
r

 (1) 

where 
1
1

− 
 − 

x
r

 is defined as all possible ways of occurrences of the (r – 1)  

non-conforming items out of x inspected items when xth inspected item is the rth  
non-conforming one. Clearly, when r = 1, the quality characteristic X follows a geometric 
distribution and the corresponding control chart reduces to the CCC-chart. 

Let us consider the target value of p is known and is denoted by p0 ∈ (0, 1). Thus, for 
given nominal FAR, α and p = p0, the lower control limit (LCL) and upper control limit 
(UCL) of a two-sided CCCr-chart based on equal-tail probability approach are 
respectively given by (see, Xie and Goh, 1997) 

( )
LCL 1

00
1

[ LCL] 1
1 2

−
−

=

− 
< = − = − 

 i rr

i r

i
P X p p

r
α  (2) 

( )00
UCL 1

1
[ UCL] 1

1 2

∞
−

= +

− 
< = − = − 

 i rr

i

i
P X p p

r
α  (3) 

Clearly, the chart triggers an OOC signal when the charting point is plotted either above 
the UCL or below the LCL. The charting point plotted above the UCL indicates a 
decrement in the fraction non-conforming which results in the larger number of 
conforming items before the occurrence of the rth non-conforming item than what is 
normally expected. This corresponds to the improvement case. On the other hand, an 
increase in the fraction non-conforming produces the smaller values of X and it is 
expected that the charting point will be plotted below the LCL. This is known as 
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deterioration case which is considered as more serious in practical situations than the 
improvement one in the SPC literature (Ohta et al., 2001; Chan et al., 2003). 

Let us define 1

0
= pρ

p
 where 

0

10, ∈  
 

ρ
p

 quantifies the change in process parameter 

when the fraction non-conforming p has been shifted from p = p0 to the new value p = p1. 
Clearly, the process is IC if ρ = 1 (i.e., p = p0) and OOC otherwise. Thus, the probability 
of signal which is defined as the probability that a charting point lies below the LCL or 
above the UCL is given by 

[ ] 0

UCL

1
LCL

( ) LCL or UCL | 1 ( )
=

= < > = = −  ρp
x

ρ P X X p p P xβ  (4) 

Note that the run length of a Shewhart-type control chart follows a geometric distribution 
with parameter β(ρ), therefore, the ARL is the reciprocal of β(ρ). Thus, the ARL function 
for the CCCr-chart is given by 

0

UCL

LCL

1 1ARL( )
( ) 1 ( )

=

= =
− ρpx

ρ
ρ P xβ

 (5) 

As we have already mentioned that the ARL function of the CCCr-chart in equation (5) 
does not achieve its maximum at the IC situation, i.e., when ρ = 1. Pignatiello et al. 
(1995) called such charts as the ARL-biased. Moreover, due to discrete nature of the 
charting statistic, the IC ARL value, i.e., ARL(1) does not coincide with the pre-specified 

value 0
1ARL =
α

 (Morais, 2017). The charts with the ARL-biased property are 

discouraged in practice and hence, several attempts have been made to eliminate the bias 
in the ARL function. In the next section, we eliminate the bias in the ARL function of the 
CCCr-chart and construct the ARL-unbiased CCCr-chart. 

3 ARL-unbiased CCCr control chart 

As stated earlier that when the quality characteristic is of discrete in nature and its 
distribution is skewed, then neither the ARL function of the control chart attains its 
maximum at ρ = 1 nor the IC ARL value, i.e., ARL(1) is exactly equal to the pre-assigned 
value, 1 / α. Knoth and Morais (2015) showed that the designed control limits of the 
ARL-unbiased chart with a pre-specified FAR, α is equivalent to a size α UMPU test, 
say, H0: p = p0 against H1: p ≠ p0 with two boundaries, say LCL and UCL and 
randomisation probabilities, say, γL and γU on these boundaries (Paulino et al., 2016; 
Morais, 2016). Following the same line of arguments, we extend the works of Morais 
(2017) on geometric chart to construct the control limits of the ARL-unbiased  
CCCr-chart. See also Kumar and Singh (2020). Now, we define the control limits of the 
CCCr-chart via the critical function φ(X) as follows. 



   

 

   

   
 

   

   

 

   

   356 N. Kumar and R.K. Singh    
 

    
 
 

   

   
 

   

   

 

   

       
 

L

U
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LCL                   
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0 LCL UCL        
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X X
γ X

φ X
γ X

X

 (6) 

Clearly, the CCCr-chart gives an OOC signal with probability one if a realisation of X is 
beyond the control limits LCL and UCL. If the charting point lies on the LCL 
(respectively UCL), the process is declared OOC with probability γL (respectively γU). 
Two sets of the randomisation probabilities (γL, γU) and the control limits (LCL, UCL) are 
obtained so that the CCCr-chart is ARL-unbiased with the nominal ARL value, 1 / α. 
Please note that the probability of a signal for the CCCr-chart with control limits defined 
by equation (6) is equivalent to the power function of a size α UMPU test. Thus, the 
probability of signal of the CCCr-chart, defined by equation (6), is given by 
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0 0 0
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0 0 0
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L U
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=

=
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p

ρp ρp ρp

ρp

ρp ρp ρp
x

ρ E φ X
P X P X γ P X
γ P X

P x γ P γ P

β

 (7) 

The corresponding ARL function is given by 

0 0 0

UCL
L ULCL

1ARL( )
1 ( ) (LCL) (UCL)

=

=
− + + ρp ρp ρpx

ρ
P x γ P γ P

 (8) 

For the IC process, i.e., ρ = 1, equation (7) gives the FAR value whereas equation (8) 
provides the IC ARL value. Please note that for a two-sided testing problem H0: p = p0 
against the alternative H1: p ≠ p0, there exists a UMPU test given by equation (6) with 
size 0 ( ( )) .=pE φ X α  Furthermore, the power function Ep(φ(X)) is differentiable and must 
have a minimum at p = p0. Please see Lehmann and Romano (2006, pp.111–112) for a 
detail. As a result, the probability of signal β(ρ) and the ARL function ARL(ρ) have their 
respective minimum and maximum at p = p0, or equivalently, ρ = 1 and they are also 
differentiable. Thus, the ARL-unbiased CCCr-chart with the specified ARL value, 1 / α, 
must satisfy the following conditions. 

1ARL(1) =
α

 (9) 

1ARL( ) | 0= =ρ
d ρ
dρ

 (10) 

Clearly, eequation (9) guarantees that the IC ARL is equal to the nominal 1 / α, whereas 
equation (10) ensures that the CCCr-chart is indeed ARL-unbiased. Conditions in 
equations (9)–(10) reduce to the following system of linear equations that can be written 
as follows. 
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The randomisation probabilities γL and γU can be obtained explicitly from the system of 
linear equations for the pair of control limits (LCL, UCL) as follows (see also, Morais, 
2017). 

L Uand− −= =
− −

de bf af ceγ γ
ad bc ad bc

 (13) 

where 0 0 0 0(LCL), (UCL), LCL. (LCL), UCL. (UCL), 1= = = = = −p p p pa P b P c P d P e α  

0 0

UCL UCL

0LCL LCL

( 1)( ), ( )
=

−+ = + p p
x

P x f xP x
p

α  provided that ad – bc ≠ 0 and LCL < UCL. 

Noting that the values of γL and γU need not be necessarily in unit square (0, 1)2 for a 
given pair of control limits (LCL, UCL). Because γL and γU are the probabilities, hence, 
in order to obtain these values in unit square, Paulino et al. (2016) obtained a set of pairs 
of the lower and upper control limits, i.e., (LCL, UCL) so that for each pair in this set, the 
corresponding γL and γU values in equation (13) fall in the unit square. The required set of 
pairs (LCL, UCL) of the ARL-unbiased CCCr-chart is provided by the following lemma. 

Lemma 1: For 0 ,∈X   we define 

0( ) ( )= ≤pF x P X x  

0
0 1 0

1( ) . ( ), 0, 1, 2,
( ) =

= = = 
x

p
p

G x i P X i x
E X

 (14) 

Defining the (pseudo) inverse function for any α ∈ (0, 1) as 

{ }1( ) min : ( )− = ≥F x F xα α  

{ }1( ) min : ( )− = >F x F xα α  

{ }1( ) min : ( )− = ≥G x G xα α  

{ }1( ) min : ( )− = >G x G xα α  

Thus, the set of pairs of the control limits that may provide the admissible solutions in 
equation (13) lying between 0 and 1 is given by 

{ }min max min max(LCL, UCL) : LCL LCL LCL , UCL UCL UCL= ≤ ≤ ≤ ≤C  

where 

{ }1 1
maxLCL min ( ), ( )− −= F Gα α  
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The control limits of the ARL-unbiased CCCr-chart can be obtained by searching the 
required pair of control limits in the set C which gives the admissible solution of γL and 
γU. To search, we start with the pair (LCL, UCL) = (LCLmin, UCLmin) and stop as soon as 
an admissible solution is found. The readers are referred to Paulino et al. (2016) for 
detailed derivation of the search grid, i.e., the set C. We obtained the control limits of the 
ARL-unbiased CCCr-charts (r ∈ 1, 2, 3, 4) for fixed FAR = 0.0027. The control limits 
with randomisation probabilities and corresponding search grids are provided in Table 1 
for p0 = 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001. The control limits for the 
CCC-chart can also be found in Morais (2017). 
Table 1 Limits of the search grid, control limits and randomised probabilities of the  

ARL-unbiased CCCr-chart for FAR, α = 0.0027 and r = 1, 2, 3, 4 

p0 
LCLmin LCLmax LCL UCLmin UCLmax UCL γL γU 

r = 1 

0.00001 240 271 241 812,555 812,708 812,575 0.736799 0.103699 

0.00005 48 55 49 162,508 162,540 162,533 0.146400 0.270193 

0.0001 24 28 25 81,252 81,269 81,265 0.072600 0.166091 

0.0005 4 6 5 16,248 16,252 16,250 0.813599 0.468725 

0.001 2 3 3 8,122 8,125 8,123 0.406312 0.224264 

0.005 0 1 1 1,622 1,624 1,622 0.480974 0.448242 

0.01 0 1 1 809 813 809 0.240561 0.010422 

 r = 2 

0.00001 6,807 7,536 6,824 1,003,091 1,006,173 1,005,384 0.509382 0.926526 

0.00005 1,361 1,508 1,366 200,615 201,232 2,001,073 0.074652 0.006722 

0.0001 681 754 683 100,305 100,614 100,535 0.770301 0.766718 

0.0005 136 152 137 20,058 20,121 20,104 0.927463 0.774723 

0.001 68 76 69 10,027 10,059 10,038 0.696759 0.649456 

0.005 14 16 15 2,002 2,010 2,007 0.117833 0.748246 

0.01 7 9 8 999 1,004 1,001 0.293658 0.124661 
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Table 1 Limits of the search grid, control limits and randomised probabilities of the  
ARL-unbiased CCCr-chart for FAR, α = 0.0027 and r = 1, 2, 3, 4 (continued) 

p0 
LCLmin LCLmax LCL UCLmin UCLmax UCL γL γU 

r = 3 
0.00001 24,639 27,063 24,778 1,178,715 1,187,693 1,185,076 0.119800 0.485258 
0.00005 4,928 5,414 4,957 235,740 237,537 2,370,112 0.124897 0.837215 
0.0001 2,464 2,708 2,479 117,868 118,767 118,504 0.500536 0.881300 
0.0005 493 543 497 23,570 23,751 23,697 0.401279 0.316564 
0.001 247 272 249 11,783 11,874 11,846 0.639165 0.121017 
0.005 50 55 51 2,353 2,372 2,366 0.431401 0.764347 
0.01 25 28 26 1,174 1,184 1,181 0.658710 0.845310 
 r = 4 
0.00001 51,620 56,420 52,065 1,345,041 1,361,119 1,355,995 0.095457 0.362816 
0.00005 10,325 11,285 10,414 269,004 272,221 271,195 0.810868 0.296360 
0.0001 5,163 5,644 5,208 134,500 136,109 135,595 0.525324 0.288207 
0.0005 1,033 1,130 1,043 26,896 27,219 27,115 0.497152 0.281832 
0.001 517 566 522 13,446 13,608 13,555 0.869268 0.281351 
0.005 104 115 106 2,685 2,719 2,707 0.369131 0.282239 
0.01 52 58 54 1,340 1,358 1,351 0.310461 0.284412 

4 Performance evaluation 

In this section, we evaluate the ARL-unbiased CCCr-charts (r = 2, 3, 4), for α = 0.0027 
and p0 = 0.00001, 0.0001, 0.001 and then compare their performances with that of the 
existing ARL-unbiased CCC-chart, proposed by Morais (2017). In order to examine the 
OOC performance, we considered the ρ = 0.5(0.1)1.5 which reflect the deviations in IC 
parameter p0 so that the true value of the parameter (OOC parameter value) becomes  
p = ρp0. Recall that the values of ρ > 1 reflect the deterioration in the process while the 
values ρ < 1 show the process improvement. In Table 2, we can find the ARL values of 
the ARL-unbiased CCCr-charts corresponding to the ρ values. Few observations can be 
made from Table 2. Firstly, the proposed CCCr-charts are ARL-unbiased which implies 
that the charts take less time to detect (increases or decreases) deviations in p0 than to 
raise the false alarm. Secondly, the ARL-unbiased CCCr-charts (r = 2, 3, 4) provide 
better performance than the corresponding CCC-chart in both improvement and 
deterioration cases. For example, with p0 = 0.0001 and ρ = 0.7, the ARL values of CCC1, 
CCC2, CCC3, and CCC4-charts 197.24, 122.50, 85.67 and 64.53 respectively. In other 
words, to detect this shift, the CCC4-chart requires nearly 64 charting points to be plotted 
on the control chart, whereas CCC1-chart takes about 197 charting points to detect same 
shift size. Thirdly, the performance of the charts is not much affected by the change in the 
IC fraction non-conforming, i.e., p0 value. 

The study further investigates the relative gain in the performance in terms of the 
ARL values if the ARL-unbiased CCCr-chart (r = 2, 3, 4) is used instead of the  
ARL-unbiased CCC-chart. Table 3 reports the associated relative gain in the ARL values 
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corresponding to ρ values, i.e., ARL(CCR )1 100%
ARL(CCC)

 − × 
 

r  when the ARL-unbiased 

CCC-chart is replaced by the ARL-unbiased CCCr-chart (r = 2, 3, 4). Table 3 suggests 
that the relative gain in the ARL values increases as r increases but at a slow pace. For 
example, when the ARL-unbiased CCC2-chart is used in place of the ARL-unbiased 
CCC-chart, then the relative gain is 54% corresponding to ρ = 0.5 whereas it is about 
71% when the ARL-unbiased CCC3-chart is used and 80% when the ARL-unbiased 
CCC4-chart is used. Therefore, when one is more interested in detecting the large shifts, 
the CCC2 or CCC3-chart may be recommended, whereas, for detecting small shifts, the 
CCC4-chart is more useful. For example, for the shift ρ = 1.2, the relative gains of the 
CCC2 and CCC3-charts over the CCC-chart are only 9% and 18% respectively. Thus, to 
increase the ability of detecting this shift, the CCC4-chart is recommended with the 
relative gain 25%. 
Table 2 OOC ARL values of the ARL-unbiased CCCr-chart for r = 1, 2, 3, 4 and  

p0 = 0.00001, 0.0001, 0.001 

ρ → 0.00001 0.0001 0.001  0.00001 0.0001 0.001 
p0 ↓ r = 1  r = 2 
0.5 54.34 54.36 54.32  24.94 24.94 24.79 
0.6 110.19 110.25 110.17  56.52 56.52 56.13 
0.7 197.24 197.33 197.23  122.50 122.49 121.63 
0.8 291.84 291.95 291.88  230.29 230.29 228.89 
0.9 353.24 353.32 353.29  334.29 334.29 332.97 
1 370.33 370.37 370.37  370.37 370.37 369.66 
1.1 360.25 360.27 360.26  348.52 348.52 348.22 
1.2 339.80 339.80 339.78  307.72 307.72 307.58 
1.3 317.41 317.40 317.37  267.49 267.49 267.39 
1.4 296.20 296.19 296.15  232.91 232.90 232.81 
1.5 277.03 277.03 276.97  204.17 204.16 204.07 
 r = 3  r = 4 
0.5 15.23 15.23 15.21  10.62 10.62 10.61 
0.6 36.03 36.03 35.99  25.67 25.67 25.64 
0.7 85.67 85.66 85.59  64.53 64.53 64.47 
0.8 186.95 186.94 186.85  155.96 155.95 155.86 
0.9 316.05 316.05 316.00  299.23 299.23 299.17 
1 370.37 370.37 370.37  370.37 370.37 370.37 
1.1 336.70 336.70 336.67  325.33 325.33 325.29 
1.2 278.69 278.68 278.62  253.41 253.40 253.33 
1.3 226.75 226.74 226.66  194.39 194.39 194.30 
1.4 185.72 185.71 185.62  151.05 151.04 150.95 
1.5 153.97 153.96 153.87  119.47 119.46 119.37 
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Table 3 The relative gain in OOC performance of the ARL-unbiased CCCr (r = 2, 3, 4)-charts 
with respect to the ARL-unbiased CCC-chart 

ρ r = 2 r = 3 r = 4 
0.5 54.11 71.98 80.45 
0.6 48.71 67.30 76.71 
0.7 37.89 56.57 67.28 
0.8 21.09 35.94 46.56 
0.9 5.36 10.53 15.29 
1 0.00 0.00 0.00 
1.1 3.26 6.54 9.69 
1.2 9.44 17.98 25.42 
1.3 15.72 28.56 38.75 
1.4 21.37 37.30 49.00 
1.5 26.30 44.42 56.88 

5 An example 

In this section, we use the simulated data provided by Chen (2013) in order to illustrate 
an application of the proposed ARL-unbiased CCCr-charts (r > 1). It was assumed that 
the process produces the non-conforming items at a rate p0 = 0.005 under the IC situation. 
Further, it was assumed that the process had been shifted to the fraction non-conforming  
p = 0.0025 which represents the improvement case. Table 4 presents 100 simulated data, 
provided by Chen (2013), which were generated from geometric distribution with  
p = 0.0025. In order to implement the CCCr-chart (r > 1), the original data is converted 
into a new set of data by aggregating the r > 1 consecutive observations. The aggregated 
observations are reported in Table 5 for implementing the CCC2, CCC3 and CCC4-chart 
respectively. The pair of control limits and randomisation probabilities for the  
ARL-unbiased CCCr-chart (r ∈ {1, 2, 3, 4}) can be taken from Table 1 for FAR,  
α = 0.0027 and p0 = 0.0005. The signalling points can be traced in Table 4 for the  
CCC1-chart and Table 5 for the CCCr, r = 2, 3, 4 charts respectively which are 
represented in bold and underline. Please read Tables 4 and 5 from top to bottom. 

It can be observed from Tables 4 and 5 that all four ARL-unbiased CCCr charts raise 
an alarm. The ARL-unbiased CCC1-chart gives an OOC signal at 87th point which is 
16,814 whereas the ARL-unbiased CCC2-chart gives a signal at 44th point. Recall that 
44th charting point which is 21,617 is the sum of 87th and 88th observations of original 
data. 

The CCC3-chart triggers an OOC signal at 28th charting point which is the sum of 
82nd, 83rd and 84th observations in original data. Moreover, theARL-unbiased  
CCC4-chart gives signal at 21st charting point which is the sum of 81st, 82nd, 83rd and 
84th observations in original data. Clearly, the CCC3 and CCC4-charts detects OOC 
signal earlier and hence have ability of detecting signals more quickly than the CCC1 and 
CCC2-charts. This example supports the findings that the ability of detecting OOC signal 
of the ARL-unbiased CCCr-chart can be improved with an increase in r, i.e., by taking 
into considerations more failures r to which conforming items are accumulated. 
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Table 4 The simulated data provided by Chen (2013) following geometric distribution with  
p0 = 0.00025 

1,948 8,088 12,743 4,449 293 1,503 5,450 2098 301 8,779 
1,245 4,985 5,549 3,526 1,607 1,014 14,544 10,333 11,690 2,698 
2,330 1,824 656 2,133 4,234 1,678 1,020 566 9,308 5,753 
3,144 2,881 1,785 15,108 3,892 1,664 2,999 562 6,350 3,025 
5,588 1,711 1,258 1,502 2,217 2,139 5,506 6,964 1,597 6,442 
4,168 566 4,082 315 11,657 1,128 8,615 1,010 2,068 2,964 
2,999 109 99 1,246 3,641 14,833 923 11,188 16,814 4,492 
88 13,054 12,430 7,469 1,020 79 4,620 737 4,860 1,487 
4,140 5,804 1,140 296 5,181 2,593 1,253 606 7,405 4,757 
136 392 4,670 2,344 4,572 4,628 5,780 263 7,732 881 

Table 5 Aggregate data for implementing the ARL-unbiased CCCr-chart (r > 1) 

Aggregate data for the CCC2-chart 
3,193 13,073 18,292 7,975 1,900 2517 19,994 12,431 11,991 11,477 
5,474 4,705 2,441 17,241 8,126 3342 4,019 1,128 15,658 8,778 
9,756 2,277 5,340 1,817 13,874 3267 14,121 7,974 3,665 9,406 
3,087 13,163 12,529 8,715 4,661 14912 5,543 11,925 21,674 5,979 
4,276 6,196 5,810 2,640 9,753 7221 7,033 869 15,137 5,638 
Aggregate data for the CCC3-chart aggregate data for the CCC3-chart 
5,523 6,416 5,439 9,011 11,256 21,014 8,092 20,479 10,736  
12,900 13,729 18,240 4,244 4,356 17,120 12,935 19,997   
7,227 18,939 10,108 10,343 18,100 6,796 1,170 17,230   
13,209 7,990 16,925 16,318 7,300 18,211 27,348 12,431   
Aggregate data for the CCC4-chart aggregate data for the CCC4-chart aggregate data for the 
CCC4-chart 
8,667 6,982 17,869 11,355 12,270 24,013 9,102 25,339 11,617  
12,843 19,359 13,785 10,026 6,609 19,664 12,794 26,614   
17,349 20,733 19,058 18,535 22,133 19,464 27,649 18,184   

6 Conclusions 

In this paper, we considered the CCCr-charts for monitoring the cumulative count of 
conforming items up to the occurrence of rth non-conforming item in the high-yield 
processes. The CCCr-charts (r > 1) have ability of early detection of an OOC signal than 
the CCC or geometric chart. However, the existing CCCr chart based on equal-tail 
probability approach is an ARL-biased which is undesirable in practical situation. 
Because a user needs to wait for a longer to get an OOC signal than a false alarm, 
especially when the process deteriorates, i.e., in the case of increased fraction non-
conforming. Thus, we designed the control limits of the CCCr-chart so that the chart 
achieves a specified nominal IC ARL value and is ARL-unbiased and hence, it gives an 
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OOC signal more quickly than it raises false alarm. The performance study reveals that 
the ARL-unbiased CCCr-chart (r = 2, 3, 4) outperforms the existing ARL-unbiased  
CCC-chart. Moreover, as r increases, the proposed ARL-unbiased CCCr-chart becomes 
more sensitive to detect OOC signals. Thus, we recommend the CCC4-chart when the 
aim is to detect small changes in the process and the CCC2 or CCC3-chart otherwise. The 
choice of r is purely subjective and depends on how long a practitioner is willing to wait 
until the rth non-conforming item. 

Several future research topics may be of interest as a follow-up. First, the proposed 
charts can be studied in the estimated parameter case. Recently, an examination of the 
effects of parameter estimation on the chart’s performance has drawn a lot of interest in 
the literature because the assumption of known IC parameter values is rarely met in 
practice. Further, in the reliability and survival analysis contexts where geometric 
distribution as a life time model has a significant role, we encounter the censored data 
which are obtained either intentionally or naturally. Thus, another future area of work 
might be using the proposed CCCr-charts with censored data. Finally, all the calculations 
were performed in R Core Team (2017) and the programs are available from the authors 
on request. 
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