
8 Int. J. Internet Protocol Technology, Vol. 15, No. 1, 2022

Copyright © 2022 Inderscience Enterprises Ltd.

Policy-based heterogeneous server utilisation using
controller framework

Aditi Bankura* and Anirban Kundu
Netaji Subhash Engineering College,
Kolkata 700152, India
and
Computer Innovative Research Society,
Howrah 711103, India
Email: aditi.bankura@gmail.com
Email: anik76in@gmail.com
*Corresponding author

Abstract: In this paper, authors have proposed a controller based framework having transmission
flow for query search and/or query responses. In this approach, total structure is divided into
number of levels, and each level has two set of controllers. Servers are worked together in each
set of controllers. Servers are heterogeneous in nature based on functionality and configurations.
Server selection in each level, communication establishment, and transmission of information
between two servers placed at two consecutive levels are three major tasks to be executed
for entire query search processing. Several policies are proposed for communication
establishment and transmission of information between servers with consideration of risks
management. Several load management strategies have been proposed for server selection
dynamically from set of available servers having distinct loads using load balance factor. In this
paper, we have also introduced a procedure to follow two separate paths for transmission of
search query and query response to avoid congestion in network to achieve minimum delay in
query response.

Keywords: query searching; heterogeneous servers; packet formation policy; data migration
policy; data block placement policy; failure policy; data block replication policy; server feedback
policy; entry controller; exit controller; server pool.

Reference to this paper should be made as follows: Bankura, A. and Kundu, A. (2022) ‘Policy-
based heterogeneous server utilisation using controller framework’, Int. J. Internet Protocol
Technology, Vol. 15, No. 1, pp.8–28.

Biographical notes: Aditi Bankura is an Assistant Professor in Computer Science & Engineering
Department of Netaji Subhash Engineering College, Kolkata, India. Prof. Bankura is associated
with Computer Innovative Research Society, West Bengal, India. She received her BTech and
MTech degree from Maulana Abul Kalam Azad University of Technology (formerly known as
West Bengal University of Technology) in 2005 and 2008, respectively. Her current research
interests are related with search engine oriented indexing, web services and distributed
computing.

Anirban Kundu is an Associate Professor in Information Technology Department of Netaji
Subhash Engineering College, Kolkata, India. He is associated with Computer Innovative
Research Society, West Bengal, India. Previously, he worked as Post-Doctoral Research Fellow
at Kuang-Chi Institute of Advanced Technology, Shenzhen, China. He also worked as foreign
expert under Municipality Government of Shenzhen during 2011 to 2014. He was a Research
Fellow in the Web Intelligence and Distributed Computing Research Lab (WIDiCoReL). He
received his BE Mechanical from Bangalore University (1999), Post Graduate Diploma in
Financial Management from Management Studies Promotion Institute (2001), MTech (IT) from
Bengal Engineering and Science University (2004), and PhD (Engineering) in Computer Science
from Jadavpur University (2009). His research interests include search engine-oriented indexing,
ranking, prediction, web page classification, semantic web (ontology-based) and natural language
processor with the essence of cellular automata, multi-agent-based system design, fuzzy
controlled systems and cloud computing.

 Policy-based heterogeneous server utilisation using controller framework 9

1 Introduction

1.1 Overview

Digital world is a collection of data and/or information and
maximum amount of data is collected from electronic devices
connected through internet. Initially, usage of computer
network was not effective and some computers and
hardware computing devices are considered as nodes
within homogeneous network for resource sharing and
communication establishment. Billions of heterogeneous nodes
are possible due to evolution of internet (Keller et al., 2014).

Client-server network architecture is used during resource
sharing among nodes within network. In client-server
architecture, large number of clients is connected to get
information from server. Number of servers is worked within a
network and functionality categorisation of servers is
accomplished for faster request processing generated from
client and faster response to client. A set of communication
protocol is needed between two nodes to maintain
synchronisation and avoid information loss during resource
sharing and communication establishment. File transfer
protocol (FTP), mail transfer protocol (MTP), hypertext
transfer protocol (HTTP) are used for file, mail and multimedia
files transmission through cline-server architecture model. Two
different approaches (2-tier and 3-tier) are available to
implement client-server architecture. In 2-tier architecture,
client is able to access information from database server
directly as business logic is written at client-end. In 3-tier
architecture, client application, application server and database
server are worked together. Application server is worked as
middleware between client application and database server
(Oluwatosin, 2014).

Mode of resource sharing through internet has been
changed drastically after innovation of cloud computing.
Mainly, three types of resource sharing have been
accomplished through cloud – Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS) (Sultan, 2010).

Voluminous amount of data is generated due to
advancement of technology. Query search over World Wide
Web (WWW) through search engine is a procedure for
transmission of search query from user to database level and
retrieval of information called as ‘query response’ from
database level and transmission it to user. Big data has been
introduced to handle voluminous data.

Big data is a collection of large volume of data.
Voluminous data is generated from various distributed sources,
such as social media, sensor devices, business, marketing,
finance. Data formats are different as generated from different
sources. Growth rate of data is increasing exponentially with
respect to time (Oussous et al., 2017). Main characteristics of
big data are defined (Lakshmi and Kumar, 2016) as follows:

i Volume: Large size of data volume is considered as big
data.

ii Variety: Big data is a collection of ‘variety’ of data i.e.,
collection of structured, unstructured, semi structured data.

iii Velocity: Speed of data generation and processing of
data refers to velocity of data.

iv Veracity: Accountability of data in big data refers veracity
of data.

v Value: In Big data, large amount of values with different
types is to be stored in database

Different types of analyses are required depending on
characteristics of Big data, such as ensemble analysis, deep
analysis (Shu, 2016).

Typical database management tools are unable to deal with
Big data as size of data is huge and complex with varieties.
Several tools are available for analysing Big data. Apache
Hadoop is most popular software which mainly works in
distributed environment with Map Reduce technique in
Hadoop distributed file system (HDFS). Main challenges of big
data are to provide high performance platform able to store,
compute, and analyse data for knowledge discovery (KDD)
(Acharjya et al., 2016). Clustering is used for analysing data
and KDD. All typical clustering methods are not useful for Big
data (Tulgar et al., 2018). Selection of clustering technique is
dependent on application type (Sanse et al., 2015; Sajana et al.,
2016; Kurasova et al., 2014). Most popular clustering
technique is K-means clustering algorithm which is applied on
Map-Reduce technique in which tasks are distributed among
several nodes during analysis and information extraction of big
data (Jain and Verma, 2014; Eren et al., 2015; Sreedhar et al.,
2017). Several mechanisms are used to reduce size of data and
number of features (Rehman et al., 2016). Large volume of
data processing requires improvement in parallel computing
with high scalability working within distributed environment
for performance enhancement (Zerhari et al., 2015). Another
challenge in big data is to retrieve information with accuracy
and minimum response time during query processing within a
network. Selection of server from server pool, redirection of
information, indexing strategy, and data placement strategies
are key elements for fast query processing through internet
(Adamu et al., 2015; Gani et al., 2016; Mittal, 2017). Content
delivery network (CDN) is used to replicate content among
servers for correctness of content and increase availability of
content (Dhanalakshmi et al., 2017; Sahoo et al., 2016). Data
migration technique is needed during redirection of information
from one location to another location. Multilingual search
engine is possible if migration between two databases with
different formats is possible (Ahmadi, 2012).

1.2 Literature review

Crawler is an important application of search engine
through which web pages are downloaded from distributed
servers through internet and stored into repository. Parsing
and indexing of web pages are being executed to store data
within database. Parsing is used to identify possible errors in
pages where as performance of search engine is enhanced
through proper usage of indexing techniques (Brin and
Page, 1998). Fast response of query searching with accuracy
is one of major challenges for any search engines.

Search engine works on enormous number of keywords,
and retrieves set of web pages from server site database.
Orientation of storage information about web pages is
dependent on indexing mechanism. In this sub-section, forward
indexing and inverted indexing have been considered as
indexing techniques.

10 A. Bankura and A. Kundu

In forward indexing, keywords of each page are stored for
conversion from page to keywords. The following steps are
included to perform forward indexing:

Step 1: Fetch one page and collect all keywords.

Step 2: Append all keywords in index entry for each web page.

Step 3: Repeat step 1 and step 2 for all pages.

Formation of forward indexing is fast and needs space to
store unique and/or redundant keywords. All pages are to be
searched during query searching process. Searching from
large size of indexing is time consuming.

In inverted indexing, related web pages are stored for
each keyword. Inverted indexing is accomplished with
following steps:

Step 1: Fetch one page and collect all keywords.

Step 2: Check presence of each keyword

Step 3: If present, add reference of that page to index entry else
create new entry in index entry and add reference of that page.

Step 4: Repeat step 1 to step 3 for all pages.

Step 5: Sort keywords

Formation of inverted indexing is time consuming as there
is keyword checking. In this technique, redundant keywords
are not stored. As a result, index size is less than forward
indexing. Query searching is fast as searching is dependent
on keywords. There is no need to search entire index like
forward indexing technique (Elaraby et al., 2012).

Web materials are downloaded from WWW through multiple
crawlers. Single crawler (SCrw) and parallel crawler (PCrw)
are two major techniques used during crawling for fixed
number of crawlers. In hierarchical crawler (HCrw), crawlers
are created dynamically during crawling, and performance of
HCrw is better than SCrw and PCrw (Kundu et al., 2009).

Web materials are organised with context based indexing
strategy in which context of document is important than
keywords. Context of document is determined through
thesaurus, context repository and ontology repository. Indexing
is performed depending on context of documents having
context, term and reference of document (Gupta et al., 2010;
Mukhopadhyay et al, 2010; Yu 2019).

1.3 Aim

Large amount of data is stored in different servers placed at
different locations connected through internet. Our aim is to
redirect query to locate database server from set of available
servers within a network in such way that delivery time of
query response should be minimum and accuracy of
information retrieval should be maximum.

1.4 Scope

Dealing with heterogeneous servers is more critical than
homogeneous servers. Efficient utilisation of heterogeneous
servers increases overall performance of system. Scope of
this paper is to place data at appropriate servers with proper
communication establishment among servers for effective
data transmission.

1.5 Motivation

Network congestion and long queue maintained by each server
are main reasons for poor performance of a system framework.
Network congestion is dependent on network framework.
Improvement in network framework reduces network
congestion, such as high power bandwidth improves network
speed with minimum delay. Numbers of tasks are arrived
simultaneously to a server within a network. One task is
processed by a server at a time and a long queue is to be
maintained for remaining tasks, and hence performance of a
system is reduced. Distribution of tasks among servers has a
great impact on a system performance. Load distribution
among servers is a main motivation of our task to enhance
system performance. Motivation of our task is to design a
system framework which is able to work in balanced mode
with establishment communication among homogeneous and
heterogeneous system to transmit data with minimum delay.

1.6 Novelty

Requirement for search query processing is the minimum delay
in query response with maximum accuracy in network.
Communication establishment, task distribution and congestion
control among servers are the three major activities to process
search queries. In proposed framework, data integrity during
communication establishment with risk management is
accomplished with several policies designing. Overall
performance, stress, throughput of servers are maintained using
load management strategies developed based on load balancing
factors in homogeneous and heterogeneous servers for task
distribution. Search query and query response are transmitted
using two different paths in proposed framework to avoid
network congestion and to minimise network delay within
network.

1.7 Organisation

Rest of the paper is organised as follows: in Section 2,
proposed work has been discussed; policy design, procedure,
and some theoretical discussions are included in Section 2;
experimental discussions have been depicted in Section 3; in
Section 4, conclusion has been drawn.

2 Proposed work

In this paper, we have proposed a system framework to search
information from database within a computer network.

2.1 Proposed framework

The architecture of our proposed system framework is shown
in Figure 1. Proposed system framework is constituted with
four levels such as user level, interface level, application level,
and database level. Each level has set of entry controllers and
set of exit controllers except user level.

The task of an entry-controller is to send query from a
server of one level to next level. The task of an exit-controller
is to send query response from a server to another server in
opposite direction.

 Policy-based heterogeneous server utilisation using controller framework 11

Figure 1 Proposed system framework

Figure 2 Working procedure of proposed system framework

12 A. Bankura and A. Kundu

The working procedure (refer Figure 2) of newly designed
searching technique is described using proposed system
framework as follows:

Step 1: Send query from a particular user to interface.

Step 2: Query is received by an interface entry controller at
interface level and forward it to the application level.

Step 3: In application level, query is received by an application
entry controller and forward it to the database level.

Step 4: Query is received by a database entry controller at
database level and select a particular database.

Step 5: Query response is then generated from selected
database and sends it to database level.

Step 6: In database level, query response is received by a
database exit controller and send it to application level.

Step 7: In application level, query response is received
by an application exit controller and sent to interface level.

Step 8: In interface level, query response is received and
send to a particular user by an interface exit controller.

2.2 Policy design

Information is always carried out from one level to another
level in proposed system framework. A set of strong
communication policies is required. Six policies have been
designed for performance enhancement of proposed system
framework within network as follows:

 Packet Formation Policy (PFP) – Information is to be
broken into number of small units of packets through
PFP before transmission of information.

 Data Migration Policy (DMP) – Transmission of packet
from one server in one level to another server at different
levels through DMP after formation of packets.

 Data Block Placement Policy (DBPP) – Placement of
packet in appropriate server among several servers is
accomplished by DBPP.

 Failure Policy (FP) – FP is used to increase possibility
of allocation of working server from set of available
servers during process of transmission.

 Data Block Replication Policy (DBRP) – This is used
to increase availability of information at time of server
failure.

 Server Feedback Policy (SFP) – Performance of overall
proposed framework is measured using SFP.

The detailed description of each policy is discussed as
follows:

Policy 1: Packet Formation Policy (PFP)

In packet formation policy, a packet is formed using
different fields as follows:

Step 1: Point out initial position of data block of particular
size “Data_Size”

Step 2: Add SIPA, SP, DIPA and DP adjacent to data block

Step 3: Add State_Type to keep track of the present location
(status) of data block

Step 4: Add PKT_ID to keep information about packet
sequence

Step 5: Header and trailer are attached to wrap the whole
unit

Structure of the packet after formation of packet is depicted
in Figure 3.

PKT_ID – Unique identification number of packet to
identify a packet sequence;

H – Header of packet;

T – Trailer of packet;

SIPA – Source Internet Protocol address;

SP – Source Port number;

DATA – Data payload;

DIPA – Destination Internet Protocol address;

DP – Destination Port number;

State_Type – Present location of packet such as Source
state(S), Destination state (D) and Transient state (T);

Data_Size – Data payload size;

Figure 3 Packet structure in PFP

 Policy-based heterogeneous server utilisation using controller framework 13

Figure 4 Packet control block (PCB)

Packet formation (refer Figure 3) is controlled by the packet
control block (PCB) (refer Figure 4). PCB block consists of
eight fields as follows:

PKT_ID – Packet sequence number used within a packet;

Pointer to Source Port (SP) – Points to initial position of
source port number in packet;

Pointer to Source Internet Protocol Address (SIPA) – Points
to initial position of source internet protocol address in
packet;

Pointer to Destination Port (DP) – Points to initial position
of destination port number in packet;

Pointer to Destination Internet Protocol Address (DIPA) –
Points to initial position of destination internet protocol in
packet;

Pointer to Data Payload (DATA) – Points to initial position
of data payload in packet;

Data_Size – Store information about data payload size;

State Type – Present location (status) of packet such as
source(S), destination (D) and transient (T);

In packet formation, required storage space in memory is
dependent on size of a packet as well as size of PCB. Size of
a packet and size of PCB are1460 bytes (refer Figure 3) and
15bytes (refer Figure 13) respectively. Total storage space
needed for packet formation is equal to the size of data
packet and size of PCB (i.e., 1475 bytes).

Policy 2: Data Migration Policy (DMP)

In data migration policy, a data block is transmitted from
one server to another server (refer Figure 5) within proposed
server-side network as follows:

Step 1: Start loop

Step 2: Send data packet from source socket to interface
socket as prepared by PFP (refer Policy 1)

Step 3: Search specific route for destination using typical
look-up method

Step 4: Send data packet from interface socket to destination
socket

Step 5: Go to next level look-up

Figure 5 Flowchart of DMP

Figure 6 Data migration control block (DMCB)

A data migration control block is used (DMCB) (refer
Figure 6) to keep track of all information required during data
migration (DM). DMCB consists of eight fields as follows:

PKT_ID – Packet sequence number to be transmitted;

SIPA – Source Internet Protocol Address;

DIPA – Destination Internet Protocol Address;

SSA – Source Socket Address;

DSA – Destination Socket Address;

SSP – Source Socket Port Number;

DSP – Destination Socket Port Number;

State Type – Present location of data packet such as Source
state(S), Destination state (D) and Transient state (T);

Total required memory storage space is equal to size of
DMCB as only one DMCB is used in data migration. Size
of DMCB is 23 bytes (refer Figure 13). Only 23 bytes
memory space is needed during data migration.

Policy 3: Data Block Placement Policy (DBPP)

In data block placement policy, a data packet prepared
by PFP (refer Policy 1) is placed at ith destination server
(refer Figure 7) as follows:

14 A. Bankura and A. Kundu

Step 1: Data packet is received by destination as transmitted
by DMP (refer Policy 2)

Step 2: Extract header and trailer from data packet

Step 3: Extract PKT_ID, State_Type, SIPA, SP, Data_Size,
DP and DIPA from packet

Step 4: Find initial position of data payload (DATA)

Step 5: Place DATA with “Data_Size” to destination server.

Figure 7 Flowchart of DBPP

Figure 8 Data placement control block (DPCB)

A data placement control block (DPCB) (refer Figure 8) is
used to monitor placement of a data block in destination.

DPCB consists of eight fields as follows:

PKT_ID – Packet sequence number to be transmitted;

SIPA – Source Internet Protocol Address;

SP – Source Port number;

DIPA – Destination Internet Protocol Address;

DP – Destination Port number;

Pointer to Data Payload (DATA) – Points to initial position
of data payload in packet;

Data_Size – Data payload size;

State Type – Set present status of packet from T (transient)
to D (destination) for successful transmission;

In data block placement, required memory storage space is
equal to size of DPCB. DPCB needs total 19 bytes (refer
Figure 13) storage space in memory.

Policy 4: Failure Policy (FP)

In failure policy, possibility of packet (prepared in Policy 1)
transmission from source to destination is checked as
follows:

Step 1: Set timer “T”

Step 2: Send a packet from source to destination

Step 3: Wait for time “T”

Step 4: Set “ACK_TYPE” as “N” if acknowledgement
generated by destination is not received by source

Figure 9 Failure control block (FCB)

A failure control block (FCB) (refer Figure 9) is used to
keep information about server failure. FCB consist of five
fields as follows:

PKT_ID – Packet sequence number;

SIPA – Source Internet Protocol Address;

DIPA – Destination Internet Protocol Address;

ACK_TYPE – Acknowledgement status such as
acknowledgement received (Y) and not received (N) by source;

Time – Waiting response time from server in milliseconds;

Total 16 bytes (refer Figure 13) storage space is required in
memory as only one FCB is used in FP. Risk management is
achieved through FP.

Policy 5: Data Block Replication Policy (DBRP)

In data block replacement policy, a data block is replicated
after placement of data block at ith server to avoid server
failure as follows:

Step 1: Extract trailer, DIPA, DP from data packet as
prepared by PPF (refer Policy 1) by ith

server

Step 2: Add RIPA and RP adjacent to data block

Step 3: Add trailer and prepare a modified data packet

Step 4: Send data packet to replication servers RIPA using
DMP (refer Policy 2)

Packet is prepared in DBRP as shown in Figure 10.

 Policy-based heterogeneous server utilisation using controller framework 15

Figure 10 Packet structure in DBRP

Figure 11 Data replication control block (DRCB)

A data replication control block (DRCB) (refer Figure 11) is
used to keep track all information related to data replication
policy. DPCB consists of eight fields as follows:

PKT_ID – Packet sequence number used within a packet;

Pointer to Source Port (SP) – Points to initial position of
source port number in packet;

Pointer to Destination Port (RP) – Points to initial position
of replication port number in packet;

Pointer to Source Internet Protocol Address (SIPA) – Points
to initial position of source internet protocol address in
packet;

Pointer to Replication Internet Protocol Address (RIPA) –
Points to initial position of replication internet protocol in
packet;

State Type – Present location (status) of packet such as
source(S), destination (D) and transient (T);

Pointer to Data Payload (DATA) – Points to initial position
of data payload in packet;

Data_Size – Store information about data payload size;

In DBRP, replication internet protocol address (RIPA) and
replication port number (RP) are equivalent to destination
internet protocol address (DIPA) and destination port
number (DP) respectively as used in PFP.

The size of packet is 1460 bytes (refer Figure 10) and to store
one DRCB in memory 15 bytes (refer Figure 13) is needed.

Policy 6: Server Feedback Policy (SFP)

In server feedback policy (SFP), performance of a server is
being measured as follows:

Step 1: Initialise REQ_NO and ACK_NO as “zero”

Step 2: Start loop

Step 3: Send data packet from source server to destination
server.

Step 4: Increase REQ_NO by 1

Step 5: If ACK_TYPE=’’Y’’ increase ACK_NO by 1

Step 6: End loop

Step 7: Measure Hit Ratio (H) = ACK_NO / REQ_NO

Figure 12 Server feedback control block (SFCB)

Server feedback policy is controlled by the Server feedback
control block (SFCB) (refer Figure 12). SFCB consists of
six fields as follows:

SIPA- Source Internet Protocol Address;

DIPA – Destination Internet Protocol Address;

REQ_NO – Number of packet send;

ACK_NO – Number of received acknowledgement;

H- Hit ratio;

ACK_TYPE – Acknowledgement status such as
acknowledgement received (Y) and not received (N) by source;

In SFP, performance of a server is proportional to number
of acknowledgement received by source. Total storage
required space in memory is dependent on size of SFCB as
one SFCB is used in feedback policy. SFCB needs total
16 bytes (refer Figure 13) storage space in memory.

Figure 13 Storage information (SI) guideline as per proposed
framework

16 A. Bankura and A. Kundu

The detailed storage information of each field used in
different control block is shown in Figure 13.

2.3 Procedure

We have designed algorithms for proposed system framework
as follows:

Algorithm 1: Query_Control ()

Input: Set of users U[] within network.
Output: Receive a query search QS from a particular user
Ui and send it to interface level.
Begin
 For i = 1 to len.U[]
 Take Query as ‘QS’ from Ui ∈ U

Call Intr_Entry_Cntrl (Ui, QS)
 ; (refer Algorithm 2)
 End For
End

Algorithm 1 is used to communicate with outside world.
Information ‘QS’ has been carried from user level to interface
entry controller placed at interface level. Algorithm 1 and
Algorithm 2 are worked together for information transmission.

Algorithm 2: Intr_Entry_Cntrl (Ui, QS)

Input: Set of interface entry controllers I_EN[].
Output: One interface entry controller I_ENj is selected
from I_EN[].
Begin
 For j = 1 to len.I_EN[] do
 Select I_ENj ∈ I_EN
 End For
 Call App_Entry_Cntrl (Ui, QS)
 ; (refer Algorithm 3)
End

Algorithm 2 is used to activate one interface entry controller
‘I_ENj’ from available set of controllers ‘I_EN ‘ and transmit
information from user level to interface level. Algorithm 1 is
deactivated and Algorithm 3 is called from Algorithm 2 for
information transmission from interface level to application
level using ‘I_ENj’. Algorithm 1 is dependent on Algorithm 2,
and Algorithm 2 is dependent on Algorithm 3.

Algorithm 3: App_Entry_Cntrl (Ui, QS)

Input: Set of application entry controllers APP_EN[].
Output: One application entry controller APP_ENm is
selected from APP_EN[].
Begin
 For m = 1 to len.APP_EN [] do
 Select APP_ENm ∈ APP_EN
 End For
 Call Db_Entry_Cntrl (Ui, QS)
 ; (refer Algorithm 4)
End

Algorithm 3 is used to select one application entry controller
‘APP_ENm’ from set of available controllers ‘APP_EN’ to
receive information from user level to application level.
Algorithm 2 is deactivated after successful information
transmission. Algorithm 4 is called from Algorithm 3 for
information transmission from application level to database
level using ‘APP_ENm’. Therefore, Algorithm 3 is dependent
on Algorithm 4.

Algorithm 4: Db_Entry_Cntrl (Ui, QS)

Input: Set of database entry controllers DB_EN[].
Output: One database controller DB_ENp and a particular
database Dt are selected.
Begin
 For p = 1 to len.DB_EN[] do
 Select DB_ENp∈ DB_EN
 End For
 Get output as ‘QR’ from Dt where Dt∈D
 Call Db_Exit_Cntrl (Ui, QR)
 ; (refer Algorithm 5)
End

Algorithm 4 is activated after receiving request from
Algorithm 3 and selects one database entry controller
‘DB_ENp’ from set of available controllers. In this algorithm,
three tasks have been performed. First task is to transmit
information from application level to database level
through ‘DB_ENp’. Second task is to select specific database
‘Dt’, transmission of information from ‘DB_ENp’ to ‘Dt’,
and retrieval of information ‘QR’ from selected database.
Third task is to transmit information from ‘Dt’ to database
level using Algorithm 5. Algorithm 3 is deactivated after
completion of first task and Algorithm 4 is dependent on
Algorithm 5.

Algorithm 5: Db_Exit_Cntrl (Ui, QR)

Input: Set of database exit controllers DB_EX[].
Output: One database exit controller DB_EXq is selected
from DB_EX[].
Begin
 For q = 1 to len.DB_EX[] do
 Select DB_EXq∈ DB_EX
 End For
 Call App_Exit_Cntrl (Ui, QR)
 ; (refer Algorithm 6)
End

Algorithm 5 is activated after receiving request from Algorithm
4, and one database exit controller ‘DB_EXq’ has been selected
from set of available controllers ‘DB_EX’ to transmit
information from ‘Dt’ (refer Algorithm 4) to database level.
This algorithm is used to transmit information from database
level to application level using‘DB_EXq’ and calling of
Algorithm 6. Therefore, Algorithm 5 is dependent on
Algorithm 6.

 Policy-based heterogeneous server utilisation using controller framework 17

Algorithm 6: App_Exit_Cntrl (Ui, QR)

Input: Set of application exit controllers APP_EX[].
Output: One application exit controller APP_EXn is
selected from APP_EX[].
Begin
 For n = 1 to len.APP_EX [] do
 Select APP_EXn∈ APP_EX
 End For
 Call Intr_Exit_Cntrl (Ui, QR)
 ; (refer Algorithm 7)
End

Algorithm 6 is used to select one application exit controller
‘APP_EXn’ from set of available controllers ‘APP_EX’, and to
transmit information from database level to application level.
Algorithm 5 is deactivated after successful information
transmission. Then, Algorithm 7 is called for information
transmission from application level to interface level
through ‘APP_EXn’. Therefore, Algorithm 6 is dependent on
Algorithm 7.

Algorithm 7: Intr_Exit_Cntrl (Ui, QR)

Input: Set of interface exit controllers I_EX[].
Output: One interface exit controller I_EXk is selected
from I_EX[].
Begin
 For k = 1 to len.I_EX [] do
 Select I_EXk∈ I_EX
 End For
 Send QR to Ui
End

Algorithm 7 is activated when Algorithm 7 is called from
Algorithm 6. Algorithm 7 is used to select one interface exit
controller ‘I_EXk’ from set of available controllers ‘I_EX’. The
task of ‘I_EXk’ is to receive information from application level
to interface level and transmit information from interface level
to desired user Ui.

In proposed algorithm, search query processing and query
response processing always have two different paths in
proposed system to avoid network congestion, minimise
network delay within network. Algorithm 1 is used only to
take search query from a particular user and send it to an
interface. Entry controllers of each level are activated through
Algorithm 2 to Algorithm 4 for processing of search query and
forwarding of search query from one level to another level.
Algorithm 4 is an end of search query processing and
beginning of query response processing. Exit controllers of
each level are activated through Algorithm 5 to Algorithm 7 for
query response processing and forwarding from one level to
another level. Algorithm 7 is responsible to provide query
response to specified user.

2.4 Theoretical discussions

Server selection from a set of servers and allocation of search
query considered as task to a selected server have great impacts

on fast processing of search query and speed-up in generation
of responses. Task distribution among servers enhances
performance and effectiveness of overall system. Selection of a
particular server from a set of servers is achieved through
following mechanism:

Assume, ‘m’ is total number of task to be allocated within
‘n’ number of servers at any level.

Task_Alloc[m][n] is a task allocation matrix where m, n ≥1

Initially, Task_Alloc[j][k] = 0 where 1 ≤ j ≤ m and 1 ≤ k ≤ n

Allocation of jth task to a particular server is achieved as
follows:

Task_Alloc[j][j mod n] = 1 (1)

From equation (1), task allocation matrix is constructed in
which each row has only one non-zero value. After ‘n’
numbers of task allocations, the resultant matrix is as follows:

1 0 0

0 1 0

Task_Alloc[m][n]
0 0 1

0 1 0

Therefore, total number of tasks is allocated to kth server
(load balance factor of server).

1

Total _ Number _ of _ Task Task _ Alloc
m

j

j k

Each time, system needs to calculate load balance factor of
each servers after allocation of each task to a particular
server, which is very time consuming. Collection of
‘counter’ variables is introduced in our proposed framework
to avoid repetitive calculation of load balance factor of each
server. Number of ‘counter’ variables is equal to number of
available servers i.e.,

Number_of_Servers = ServLoad[n] where n ≥ 1 (2)

Motivation of Theorem 1: In proposed system framework,
several servers are used at each level. Only one server is
selected for allocation of specific search query as task. The
aim of task assignment is to optimise utilisation of
resources, minimise response time and uniform distribution
of load among all nodes. Theorem 1 has been designed for
uniform load distribution among all available servers.

Theorem 1: Proposed system framework is balanced if and
only if the difference in load balance factor of any two
servers within the framework is either ‘0’ or ‘1’.

Proof: Assume, at any level, there are ‘n’ numbers of
servers.

Serv_Ptr is a pointer which points to most recently used
server for allocation of specific search query as task.

ServLoad[i] is used to represent load of ith server
(refer equation (2)).

18 A. Bankura and A. Kundu

Initially, ServLoad[i] = 0; where1 ≤ i ≤ n
(refer equation (2))

*Serv_Ptr = 0; where 1≤ *Serv_Ptr ≤ n

Task allocation to a server is done by two steps as follows:

Step 1: Modification of Serv_Ptr is accomplished for
selection of particular server from ‘n’ numbers of servers.

Step 2: Task allocation is accomplished for the selected
server incrementing load balance factor of that particular
server by one.

Modification of Serv_Ptr is accomplished with the following
rules:

Rule 1: If *Serv_Ptr = n then,

*Serv_Ptr = 1

Rule 2: If *Serv_Ptr ≠ n then,

*Serv_Ptr = *Serv_Ptr + 1

Task allocation (Tj) is accomplished to a particular server
(ServLoad[i]) determined as follows:

i = *Serv_Ptr;

ServLoad[i] = ServLoad[i] + 1;

At any time instance, after allocation of task at ServLoad[i],
following relations are always true:

ServLoad[i] = ServLoad[i – 1]; where i > 1 (3)

ServLoad[i] = ServLoad[i + 1] + 1; where i < n (4)

From equation (3),

|ServLoad[i] - ServLoad[i – 1] | = 0

From equation (4),

| ServLoad[i] - ServLoad[i + 1] | = 1

Apart from above mention situations (refer equations (3)
and (4)), 1st server is to be selected after task allocation to
nth server (refer Rule 2); and in such situation, following
relation is always true:

| ServLoad[1]-ServLoad[n]| = 0

Therefore, for all cases, difference in load balance factor
between any two servers within the framework is either ‘0’
or ‘1’.

Hence, it is proved that proposed system framework is
balanced if and only if the difference in load balance factor
of any two servers within the frame work is either ‘0’ or ‘1’.

(End of Proof)

Motivation of Theorem 2: Heterogeneous servers are
worked together in proposed system framework. Servers are
heterogeneous in terms of domain specific, configuration
specific etc.. Task is allocated to a specific server from a set
of heterogeneous servers in such a way that maximum
throughput of system is achieved through load balancing
among servers. Theorem 2 has been designed for uniform

load distribution within homogenous servers among the
whole set of heterogeneous servers.

Theorem 2: If proposed system framework consists of
heterogeneous servers, then the system framework is
considered to be balanced if and only if the difference in
load balance factor of any two homogeneous servers within
the framework is ‘0’ or ‘1’.

Proof: Assume, heterogeneous servers are classified with
‘x’ numbers of categories.

Serv_Type[t] is used to represent numbers of servers with
category ‘t’ where 1 ≤ t ≤ x.

‘n’ is used to represent total numbers of servers in each
category.

ServLoad[t][i] is used to represent load of ith server with
category ‘t’ where 1 ≤ t ≤ x and 1 ≤ i ≤ n.

Serv_Ptr[x] is used as an array of pointers where task of
each pointer is to point to most recently used server of
particular category for allocation of task.

Initially,

n = ServType[t]; where 1 ≤ t ≤ x.

ServLoad[t][i] = 0; where1 ≤ t ≤ x and 1 ≤ i ≤ n

*Serv_Ptr[t] = 0; where 1 ≤ t ≤ x

Task allocation to a server is done by three steps as follows:

Step 1: Identification of category of a server from ‘x’
number of categories.

Step 2: Modification of Serv_Ptr is accomplished for
selection of particular server from ‘n’ numbers of servers of
particular category.

Step 3: Task allocation is accomplished for the selected
server incrementing load balance factor of that particular
server by one.

Modification of Serv_Ptrof each category of servers is
accomplished with the following rules:

Rule 1: If *Serv_Ptr[t] = n then,

*Serv_Ptr[t] = 1

Rule 2: If *Serv_Ptr[t] ≠ n then,

*Serv_Ptr[t] = *Serv_Ptr[t] + 1

Task allocation (Tj) is accomplished to a particular server
(ServLoad[t][i]) determined as follows:

i = *Serv_Ptr[t];

ServLoad[t][i] = ServLoad[t][i] + 1;

At any time instance, after allocation of task at
ServLoad[t][i], following relations are always true:

ServLoad[t][i] = ServLoad[t][i-1]; where i > 1 (5)

ServLoad[t][i] = ServLoad[t][i+1] + 1; where i < n (6)

 Policy-based heterogeneous server utilisation using controller framework 19

From equation (5),

 |ServLoad[t][i] – ServLoad[t][i-1] | = 0

From equation (6),

ServLoad[t][i] – ServLoad[t][i+1] | = 1

Apart from above mention situations (refer equations (5)
and (6)), 1st server is to be selected after task allocation to
nth server of a particular category (refer Rule 2); and in such
situation, following relation is always true:

| ServLoad[t][1] - ServLoad[t][n]|= 0

Therefore, for all cases, difference in load balance factor
between any two servers with tth category within the
framework is either ‘0’ or ‘1’.

Hence, it is proved that if proposed system framework
consists of heterogeneous servers, then the system framework
is considered to be balanced if and only if the difference in load
balance factor of any two homogeneous servers within the
framework is ‘0’ or ‘1’.

(End of Proof)

Consider, proposed system is worked in balanced mode
with ‘n’ number of servers and maximum load balance
factor of a server from set of servers is ‘p’ (refer Theorem 1)
where n, p ≥ 1. Then, load balance factor of ‘n’ number of
servers (refer equation (2)) is constructed as follows:

ServLoad[n] = [p, p… p–1, … p–1]

In a particular instance, if ‘x’ number of tasks is released
from ith server, then load balance factor of ith server is
reduced with respect to other servers as follows:

ServLoad[i] = ServLoad[i] – x where x ≥ 1
and 1 ≤ i ≤ n (7)

‘ServRelease[n]’ is used to keep information about released
task(s) of each server. Therefore, total number of released
tasks by ith server is as follows:

ServRelease[i] = ServRelease[i] + x where 1 ≤ i ≤ n (8)

Then, ith server is selected for next task allocation to
minimise differences in load balance factors from other
servers.

From equation (8), a new task Tj is allocated to ith server
among all servers as load balance factor of ith server is
minimum with respect to other available servers. As a result,
load balance factor of ith server is increased by one and number
of released tasks of ith server is decreased by one.

Motivation of Theorem 3: Proposed system is always
worked in a balanced mode in terms of allocation of new
tasks among servers. Number of tasks is released from
allotted servers simultaneously based on completion of
respective task executions. A server is allocated for a new
task in such a way that loads among servers is uniformly
distributed after release of tasks from servers. Theorem 3
has been designed for release of tasks among servers.

Theorem 3: Proposed system framework is balanced if and
only if difference in load balance factor of any two servers
within the framework is minimum with respect to the task
release.

Proof: Assume, at any level, there are ‘n’ numbers of
servers.

ServLoad[i] is used to represent load of ith server (refer
Theorem 1).

Release_Ptr is a pointer which points to server with
maximum numbers of released tasks.

ServRelease[i] is used to represent number of released
task of ith server.

From equation (8), ServRelease[i] = 0; where1≤ i ≤ n (9)

Initially, *Release_Ptr = 0;

Consider, p and q numbers of tasks have been released from
kthserver and jth server respectively.

From equation (7) load balance factor of kth and jth
servers are reduced as follows:

ServLoad[k] = ServLoad[k] – p;

ServLoad[j] = ServLoad[j] – q;

From equation (8), numbers of released tasks of kth and jth
servers are as follows:

ServRelease[k] = ServRelease[k] + p; (10)

ServRelease[j] = ServRelease[j] + q; (11)

From equation (9), following relations are always true:

ServRelease[i] = 0; where i ≠ k and i ≠ j

From equation (10) and equation (11), following relations
are always true:

ServRelease[k] ≥ 0;

ServRelease[j] ≥ 0;

In such situation, a server which has maximum number of
released tasks than other servers is selected for allocation of
new task ‘Tj’. The selection of a server from set of servers is
accomplished with following ways:

Maximum(ServRelease ,ServRelease

; k

; j

k j

k if ServRelease SerrvRelease j

j if ServRelease SerrvRelease k

*Release _ Ptr

Maximum ServRelease k ,ServRelease j ;

Allocation of task Tj to a server pointed by Release_Ptr is
accomplished as follows:

i = *Release_Ptr;

ServLoad[i] = ServLoad[i] + 1;

ServRelease[i] = ServRelease[i] – 1;

20 A. Bankura and A. Kundu

Therefore, Release_Ptr always points to a server which has
maximum numbers of released tasks to minimise load
balance factor among available servers and Serv_Ptr (refer
Theorem 1) is not modified until *Release_Ptr is equal to
zero; i.e., not a single task is released by any server.

Hence, it is proved that proposed system framework is
balanced if and only if difference in load balance factor of
any two servers within the framework is minimum with
respect to the task release.

(End of Proof)

2.5 Benefits of proposed framework

Proposed framework provides following benefits:

1) Search query and query response are carried using two
different paths to avoid congestion over network and to
provide fast transmission of data to achieve minimum
delay in response time (refer Algorithm 1 to Algorithm 6).

2) Proposed framework is responsible for packet formation
of data and transmission of data packets from source to
destination designing PFP (refer Policy 1), DMP (refer
Policy 2), and DMCB (refer Policy 3) with corresponding
monitoring control blocks.

3) Failure in data transmission from source to destination
is supervised by designing FP (refer Policy 4).

4) Replication of data is accomplished with designing
DBRP (refer Policy 5) to provide availability of server
due to cause of failure in desired server.

5) Efficiency of servers is being measured designing SFP
(refer Policy 6)

6) In each level, high performance of servers is maintained
by task distribution among servers restricting difference
in load balance factor between any two servers within 0
or 1 in network (refer Theorem 1).

7) Proposed framework is capable to work with
heterogeneous distributed servers’ environment with
controlled load distribution among any two homogeneous
servers at each level in network (refer Theorem 2).

8) Minimum load difference is maintained during allocation
of new task for uniform tasks distribution among servers
after releasing finished tasks from several servers within
proposed framework (refer Theorem 3).

9) Minimum delay in response time of search queries is
achieved through level based concurrent execution of
search queries in servers placed at different levels (refer
Algorithm 1 to Algorithm 6).

10) Simultaneous execution of search queries is achieved
using level based proposed framework (refer Sub-
Section 2.1, Algorithm 1 to Algorithm 6).

11) Overall performance of system is dependent on number
of levels, number of entry controllers and number of
exit controllers (refer Sub-Section 3.2.4).

12) System performance is not dependent on packet size, as
separate PFP (refer Policy 1) is designed for formation
of data packets (refer Sub-Section 3.2.4).

3 Experimental discussions

In proposed system framework, user search queries are
carried out through three levels such as interface level,
application level, database level (refer Figure 1). Each level
considered as layer is managed by several policies (refer
Sub-Section 2.2). Utilisation of policies in different layers
of proposed framework is shown in Table 1 based on
practical implementation.

Table 1 Layer based implementations of different proposed
policies

Layer Policy Name(Policy No)

Interface
Layer

PFP (Policy 1), DMP(Policy 2), SFP (Policy 6)

Application
Layer

DMP(Policy 2)

Database
Layer

DMP (Policy 2), DBPP (Policy 3), FP (Policy 4),
DBRP (Policy 5)

3.1 Experimental setup

The system configuration has been used during experimentation
as shown in Table 2.

Table 2 System configuration

Primary
memory
(RAM)

Processor
Processor

Speed
Hard Disk

Drive (HDD)

Number
of

Systems

2GB Intel® Core™ 2 Duo 2.93GHz 320GB 23

4GB Intel® Core™ i3 3.60GHz 1TB 8

3.2 Performance analysis

We have studied experimental performance analysis based
on 31 server site machines. Maximum 3000 users have been
considered for server stress calculation in real time.

3.2.1 Observation over server performance

Table 3 provides performance of servers using JMeter (Kaur
et al., 2016) running in existing framework and proposed
framework with respect to number of samples, average
response time in milliseconds, 90% line and throughput.
“Number of virtual users per request”, “average time taken by
all the samples to execute specific label”, “90% of the samples
not beyond more than obtained time” and “amount of
data downloaded from server during the performance test
execution” represent number of samples, average response time
in milliseconds, 90% line and throughput respectively. It is
observed that average response time of server, value of 90%
line, and throughput of server (KB/sec) during the performance
testing with equal number of users in specified label (HTTP
request) are at par whether we use proposed framework.
Hence, it can be concluded that proposed framework is light
weight.

 Policy-based heterogeneous server utilisation using controller framework 21

Table 3 Performance results for different number of users in existing framework and proposed framework using JMeter

Number of
users

Label

JMeter running with existing framework JMeter running with proposed framework

Number of
samples

Average
response time in

milliseconds
(ms)

90%
Line

KB/sec
Number of

samples

Average response
time in

milliseconds (ms)

90%
Line

KB/sec

100

HTTP
Request

988 960 1023 201.35 1021 968 1025 200.29

200 1353 938 1022 399.28 1113 950 1069 383.36

300 1496 928 1084 580.97 1563 935 1064 579.14

400 1807 910 1025 778.86 1455 915 1039 741.77

500 1901 890 1026 964.03 1757 902 1035 923.08

1000 1893 840 1014 1644.87 1745 886 1089 1495.47

1500 1413 694 1051 1058.50 1382 569 1005 1222.30

2000 1875 691 1059 1508.98 1793 575 1014 1488.62

2500 2350 665 1064 1913.10 2135 587 1043 1831.57

3000 2716 704 1072 2157.83 2666 688 1084 1988.34

Comparative analysis has been performed based on existing
framework and proposed framework with respect to
maximum response time and minimum response time,
median response time and throughput of servers using
JMeter.

Longest time and shortest time taken among chosen
samples for a specific label (HTTP) are represented as
maximum and minimum response time of servers
respectively. Figure 14 ensures that response time of servers
in proposed framework is at par compared to response time
of server with existing framework.

Median response time of servers indicates that response
time of 50% of the samples is not more than median response
time. Median response time of servers in proposed framework
is at par compared to existing framework as shown in Figure 15.

Throughput represents number of request processed.
Throughput is measured using JMeter running in existing
framework and proposed framework as shown in Figure 16.
From Figure 16, it has been observed that proposed system
framework maintains resemblance in overall performance of
servers with increasing number of users. Hence, proposed
framework is light weight to servers having less stress.

Figure 14 Maximum and minimum response time of existing framework and proposed framework using JMeter

22 A. Bankura and A. Kundu

Figure 15 Median response time of existing framework and proposed framework using JMeter

Figure 16 Throughput of servers in existing framework and proposed framework using JMeter

3.2.2 Cost analysis

The cost of proposed framework is obtained by combining cost
of each level (refer Figure 1) with network delay. User level,
interface level, application level and database level costs are
presented as UserLevel_Cost, IntrLevel_Cost, AppLevel_Cost,
DatabaseLevel_Cost respectively and network delay is
represented as ∂t. Total cost of proposed system framework is
determined with the following equation:

Total_Cost = UserLevel_Cost + IntrLevel_Cost +
AppLevel_Cost + DatabaseLevel_Cost + ∂t

User level cost is only dependent on user input task and output
received task. Therefore, user level cost is determined with
following equation:

UserLevel_Cost = Input_Cost +
Output_Cost = 2 units

Interface level cost is the collective cost of entry controller
and exit controller (refer Figure 1) placed at interface level.
Therefore, interface level cost is determined with following
equation:

IntrLevel_Cost = IntrEnCntroller_Cost +
IntrExCntroller_Cost

Entry controller cost at interface level is determined with
following equation:

IntrEnCntroller_Cost = PFP_Cost + SFP_Cost +
ServerSelection_Cost + Synchronisation_Cost +
DMP_Cost + ∂t = 5 units [As, ∂t ≈ 0]

 Policy-based heterogeneous server utilisation using controller framework 23

Exit controller cost at interface level is determined with
following equation:

IntrExCntroller_Cost = Synchronisation_Cost +
DMP_Cost + ∂t = 2 units [As, ∂t ≈ 0]

Therefore, IntrLevel_Cost = (5 + 2) units = 7 units

Similarly, application level cost is determined with following
equation:

AppLevel_Cost = AppEnCntroller_Cost +
AppExCntroller_Cost

Entry controller cost at application level is determined with
following equation:

AppEnCntroller_Cost = ServerSelection +
Synchronisation_Cost + DMP_Cost + ∂t =
3 units [As, ∂t ≈ 0]

Exit controller cost at application level is determined with
following equation:

AppExCntroller_Cost = ServerSelection +
Synchronisation_Cost + DMP_Cost + ∂t =
3 units [As, ∂t ≈ 0]

Therefore, AppLevel_Cost = (3 + 3) units = 6 units

Similarly, database level cost is determined with following
equation in which DatabaseServer_Cost is used to determine
cost to retrieve query information from specific database:

DatabaseLevel_Cost = DbEnCntroller_Cost +
DatabaseServer_Cost + DbExCntroller_Cost

Entry controller cost at database level is determined with
following equation:

DbEnCntroller_Cost = ServerSelection +
Synchronisation_Cost + DMP_Cost + ∂t =
3 units [As, ∂t ≈ 0]

Information retrieval cost at database level is determined
with following equation:

DatabaseServer_Cost = DBPP + DBRP + FP + ∂t =
3 units [As, ∂t ≈ 0]

Exit controller cost at database level is determined with
following equation:

DbExCntroller_Cost = PFP + ServerSelection +
Synchronisation_Cost + DMP_Cost + ∂t =
4 units [As, ∂t ≈ 0]

Therefore, DatabaseLevel_Cost = (3 + 3 + 4)
units = 10 units

Total_Cost = (2 + 7 + 6 + 10) units [As, ∂t ≈ 0]

 = 25 units

Hence, total ‘25 units’ cost is required by the proposed
framework to perform a query searching within network,
and is not a fixed value. The value ranges in milliseconds.
Figure 14 shows that 10 milliseconds and1117 milliseconds
are minimum and maximum response time for 500 users.
Therefore, in case of minimum response time, cost of one
unit is equivalent of 0.4 milliseconds (i.e. 10/25),
whereas, cost of one unit for maximum response time is
44.68 milliseconds (i.e. 1111/25).

3.2.3 Load analysis

Load analysis of proposed system has been accomplished
with respect to percentage of CPU usage and percentage of
maximum clock frequency of servers. Work load of CPU
usage percentage of servers in existing framework and
proposed framework has been represented at Figure 17.
CPU usage percentage has been increased during maximum
utilisation of servers. CPU usage percentage of proposed
framework is lies between 55% and 66%.

Utilisation of servers is measured with measurement of
maximum clock frequency percentage usage of servers. Clock
frequency used by proposed framework is already specified in
Table 2. Figure 18 shows clock frequency used in existing
framework and proposed framework. Maximum clock
frequency percentage of proposed model is lies 80% to 90%.

Figure 17 CPU usage percentages of servers in existing framework and proposed framework

24 A. Bankura and A. Kundu

Figure 18 Maximum clock frequency percentage of servers in existing framework and proposed framework

3.2.4 Time analysis

Proposed framework has ‘L’ number of levels and each
level consists of ‘M’ number of entry controllers, and ‘N’
number of exit controllers. Maximum ‘tM’ time is required
to select one entry controller and maximum ‘tN’ time is
required to select one exit controller in a particular level.
Therefore, in each level, total (tM + tN) time is required to
allocate one entry controller and one exit controller. Total
[L * (tM + tN)] time is required to proceed with a search
query. Therefore, time complexity of proposed framework
is O (L * (tM + tN)).

In proposed approach, packet size is fixed (1460 bytes)
in each level whether we consider PFP (refer Figure 3) or
DBRP (refer Figure 10) using storage information guideline
for proposed framework (refer Figure 13) in various policy
design. In run time, time complexity is always invariant
with respect to packet size, since packet size is fixed. Thus,
time complexity only depends on L, M, & N.

3.3 Comparison results

3.3.1 Features based comparisons

Several features are being identified in proposed framework
and compared to existing frameworks as shown in Table 4.
Following features have been considered as follows:

 Crisis management

 Synchronisation

 Distributed Environment

 Strategic Control

 Real Time Analysis

 Response Time

 Working Environment

 Load Management

 Network Status Consideration

 Application Area

 Risk Management

Crisis management deals with availability of servers during
processing of search query. Uniform distribution of tasks
among servers increases maximum possibilities of servers’
availability. In each level, uniform distribution of tasks is
achieved through load balancing mechanisms in proposed
framework (refer Theorem 1, Theorem 2 and Theorem3).
Therefore, proposed framework is responsible for crisis
management, whereas existing frameworks are unable to
provide any such mechanism for crisis management.

Synchronisation among two servers considering two
consecutive levels is established using DMP (refer Policy 2)
for data transmission. Thus, proposed framework is
responsible for providing synchronisation among servers. In
Table 4, it has been observed that except the first existing
framework, synchronisation mechanism is not specified for
all remaining existing frameworks.

Proposed framework works in distributed environment
like other specified existing frameworks where servers are
distributed in network (refer Sub-Section 1.3) as shown in
Table 4.

Communication establishment and data transmission
among servers are accomplished by designing policies such as
PFP, DMP, DBPP, FP, DBRP, and SFP (refer Sub-Section
2.2). Distribution of tasks among servers is carried with load
balancing approach (refer Sub-Section 2.4) to maintain
consistency in performance of servers. Thus, proposed
framework has policy based load balancing strategic control on
servers. It has been observed that specified existing
frameworks have their own specified strategic control as
referred in Table 4.

Real time analysis of proposed framework is performed
using JMeter simulation software (refer Sub-Section 3.2).
Therefore, real time analysis has been accomplished
(refer Table 4).

 Policy-based heterogeneous server utilisation using controller framework 25

Response time is being measured based on calculation of
time requirement to process a search query where response
time is dependent on number of levels, number of entry
controllers and number of exit controllers (refer Sub-Section
3.2.4). Therefore, in worst case scenario, time complexity of
proposed framework is O (L*(M + N)), where L, M, and N are
number of levels, number of entry controllers, and number of
exit controllers respectively.

Servers with different configurations and functionalities are
worked together in each levels of framework. Heterogeneous
working environment of servers is controlled using load
balancing approach (refer Theorem 3) for proposed framework.
From Table 4, it has been observed that client-side server
selection algorithms (refer Dykes et al., 2000) work in
heterogeneous environment.

Load management is accomplished through task
distribution among servers using load balancing approaches
(refer Theorem 1, Theorem 2, and Theorem 3). Thus, load
management is accomplished as shown in Table 4.

Network status has been considered in cost analysis
measurement of proposed framework (refer Sub-Section 3.2.2).
From Table 4, it has been observed that network status is
unknown for dynamic replication management strategy,

whereas existing frameworks (refer Dykes et al., 2000, Bakiras,
2005, and Wang et al., 2009) have considered network status.

Proposed framework is applicable for web based query
processing among several application areas like content
distributed network (CDN), geographic information system
(GIS), and web based query processing (refer Section 2, Sub-
Section 3.2). Application areas of specific existing frameworks
are mentioned in Table 4.

Risk management is required for fetching information
about failure of servers within proposed framework.
FP has been designed for risk management in framework (refer
Policy 4). Risk management is unknown for most of the
existing frameworks as shown in Table 4.

3.3.2 Comparative study on experimental observation

Processing time of four search queries as a sample study
is compared between proposed framework and existing
framework such as Google as shown in Figure 19. Figure 19, it
has been observed that processing time of proposed framework
is better than existing framework for all queries. It has been
also observed that processing time of proposed framework is
not varied widely. Therefore, proposed framework maintains
consistency performance in processing time of search queries.

Table 4 Comparative analysis between proposed framework and existing frameworks

Features

Client-side server
selection algorithms
(refer Dykes
et al., 2000)

Approximate server
selection algorithms
(refer Bakiras, 2005)

Dynamic replication
management strategy
(refer Pan
et al., 2018)

Dynamic Data
Migration Policies
(refer Wang
et al.,2009)

Proposed Framework

Crisis Management No No No No Yes as discussed in
Theorem 1, Theorem 2,
Theorem 3 (refer Sub-
section 2.4)

Synchronisation Yes Not available Not available Not available Yes

Distributed
Environment

Applicable Applicable Applicable Applicable Applicable

Strategic Control Set of algorithms Gradient projection
method

Fixed method DDMC & DDMD Policy based load
balancing approach

Real Time Analysis Yes Yes Yes Yes Yes

Response Time Unknown O (LMN2) where L,
M, N are number of
iteration, hosted
objects, servers
respectively

Unknown Unknown O (L*(M + N)) where
L, N and M are number
of levels, entry
controllers and exit
controllers respectively

Working Environment Heterogeneous Homogeneous Homogeneous Homogeneous
structure and
heterogeneous
functionality of
servers

Heterogeneous

Load Management Not considered Yes Yes Yes Yes

Network Status
Consideration

Considered Considered Unknown Considered Considered

Application Area Not specified Content Distributed
Network (CDN)

Geographic
information system
(GIS) based query
processing

Web based query
processing

Web based query
processing

Risk Management Unknown Unknown Yes Unknown Yes through FP
(refer Policy 4)

26 A. Bankura and A. Kundu

Figure 19 Comparison based on processing time of multiple search queries between proposed framework and existing framework

3.3.3 Comparative study on efficiency measurement

Proposed framework has three levels such as interface level,
application level, and database level. Each level has set of entry
controllers and set of exit controllers. A controller is busy if
and only if a task is assigned to the controller. After completion
of task, controller assigns the task to its next level of
controllers. Table 5 shows activities of controllers placed at
different levels in different time spans of proposed framework.
Tasks have been considered as P1, P2, P3, P4, P5, and P6,
whereas time spans are T1, T2, T3, T4, T5 and T6. From
Table 5, it has been observed that in initial time span T1,
interface level entry controller is busy with task P1. Remaining
controllers are available for assigning tasks. In next time span
(T2), P1 is assigned to application level controller. Therefore,
interface level controller becomes available for new task
assignment. New task P2 is assigned to the available controller.
Similarly, all tasks are assigned and further processed to the
next level of controllers. From Table 5, it has been shown that
task P1 is accomplished in time span T6. Therefore, task P2
finishes in next time span (T7). P2 is to be processed by

interface level exit controller within T7 time span. Similarly,
P3, P4, P5, and P6 are executed within time span T8, T9, T10
and T11 respectively. Hence, after completion of first task,
remaining tasks would be finished sequentially in next
consecutive time spans.

Let, we have to process ‘n’ number of tasks and each
time span represents one unit time.

In proposed framework, 1st task is completed after 6 unit
time span.

To complete ‘n’ number of task, required time = 6 + (n – 1)
time units = (n + 5) time units where ‘6’ represent time units
required to complete 1st task and remaining (n – 1) tasks
requires (n – 1) time units.

Now, consider existing framework requires same unit time
i.e. 6 time units to complete 1st task. To complete ‘n’ number of
tasks, existing framework requires 6*n time units.

Figure 20 depicts that initially, proposed framework and
existing framework require same time to complete 1st task.
And remaining tasks require more time in existing
framework than proposed framework. Therefore, efficiency
of proposed framework is more than existing framework.

Table 5 Efficiency measurement using time requirement

Time Span
Interface level

entry controller
Application level
entry controller

Database level
entry controller

Database level exit
controller

Application level
exit controller

Interface level exit
controller

T1 P1 – – – – –

T2 P2 P1 – – – –

T3 P3 P2 P1 – – –

T4 P4 P3 P2 P1 – –

T5 P5 P4 P3 P2 P1 –

T6 P6 P5 P4 P3 P2 P1

 Policy-based heterogeneous server utilisation using controller framework 27

Figure 20 Comparison based on time requirement of proposed framework and existing framework

4 Conclusion

In this paper, a light-weight policy based controller
framework has been designed utilising load balance factor
for information search through distributed database servers.
Information is transmitted from one layer to another using
entry controller and exit controller placed at different levels
and better search query processing time is achieved than
existing query processing system. Communication
establishment and transmission of information from one
level to another level have been accomplished through
designing of several policies with risk management.
Controllers are reused for further new searching tasks after
successful transmission of information to next level.
Network congestion and query response time are reduced
through two way transmission of data and load management
among servers. Performances of servers are maintained at
par through efficient load management schemes.

Acknowledgement

This research work is funded by Computer Innovative
Research Society, West Bengal, India. Award number is
“2018/CIRS/R&D/2018-12-21/PHSUCF”.

References

Acharjya, D.P. and Ahmed, K.. (2016) ‘A Survey on Big Data
Analytics: Challenges, Open Research Issues and Tools’,
International Journal of Advanced Computer Science and
Applications, Vol. 7, No. 2, pp.511–518.

Adamu, F.B., Habbal, A., Hassan, S., Cottrell, R.L., White, B. and
Abdullahi, I. (2015) ‘A Survey On Big Data Indexing
Strategies’, 4th International Conference on Internet
Applications, 2015.

Ahmadi, R., Cami, B.R. and Hassanpour, H. (2012) ‘Automatic Data
Migration between Two Databases with Different Structure’,
International Journal of Applied Information Systems, Vol. 3,
No. 3, pp.23–28.

Bakiras, S. (2005) ‘Approximate server selection algorithms in content
distribution networks’, IEEE International Conference on
Communications, pp.1490–1494.

Brin, S. and Page, L. (1998) ‘The Anatomy of a Large-Scale
Hypertextual Web Search Engine’, Computer Network and ISDN
Systems, Vol. 30, pp.107–117.

Dhanalakshmi, S., Prabakaran, T. and Kishore, K. (2017) ‘Content
Delivery Networks – A Survey’, International Journals of
Advanced Research in Computer Science and Software
Engineering, Vol. 7, No. 7, pp.228–230.

Dykes, S.G., Robbins, K.A. and Jeffery, C.L. (2000) ‘An empirical
evaluation of client-side server selection algorithms’, Proceeding
IEEE INFOCOM 2000, Vol. 3, pp.1361–1370.

Elaraby, M.E., Sakre, M.M., Rashad, M.Z. and Nomir, O. (2012)
‘Dynamic and Distributed Indexing Architecture in Search
Engine using Grid Computing’, International Journal of
Computer Applications, Vol. 55, No. 5, pp.34–42.

Eren, B., Karabulut, E.C., Alptekin, S.E. and Alptekin, G.I. (2015) ‘A
K-Means Algorithm Application on Big Data’, Proceedings of
the World Congress on Engineering and Computer Science,
Vol. 2, pp.814–818.

Gani, A., Siddiqa, A., Shamshirband, S. and Hanum, F. (2016) ‘A
survey on indexing techniques for big data: taxonomy and
performance evaluation’, Article in Knowledge and Information
Systems, Vol. 46, No. 2, pp.241–284.

Gupta, P. and Sharma, A.K. (2010) ‘Context based Indexing in Search
Engines using Ontology’, International Journal of Computer
Applications, Vol.1, No. 14, pp.49–52.

Jain, M. and Verma, C. (2014) ‘Adapting k-means for Clustering in
Big Data’, International Journal of Computer Applications,
Vol. 101, No.1, pp.19–24.

Kaur, N. and Bahl, K. (2016) ‘Performance Testing Of Institute
Website Using Jmeter’, International Journal of Innovative
Science, Engineering & Technology, Vol. 3, No. 4, pp.534–537.

28 A. Bankura and A. Kundu

Keller, A., Borkmann, D., Neuhaus, S. and Happe, M. (2014) ‘Self-
Awareness in computer networks’, International Journal of
Reconfigurable Computing, Vol. 2014, No. 10, pp.1–16.

Kundu, A., Dutta, R., Dattagupta, R. and Mukhopadhyay, D. (2009)
‘Mining the web with hierarchical crawlers – a resource sharing
based crawling approach’, International Journal of Intelligent
Information and Database Systems, Vol. 3, No. 1, pp.90–106.

Kurasova, O., Marcinkevicius, V., Medvedev, V., Rapecka, A. and
Stefanovic, P. (2014) ‘Strategies for Big Data Clustering’, IEEE
26th International Conference on Tools with Artificial
Intelligence, pp.740–774.

Lakshmi, C. and Kumar, V.V.N. (2016) ‘Survey Paper on Big Data’,
International Journal of Advanced Research in Computer
Science and Software Engineering, Vol. 6, No. 8, pp.368–381.

Mittal, M. (2017) ‘Indexing Techniques and Challenge in Big Data’,
International Journal of Current Engineering and Technology,
Vol.7, No.3, pp.1225–1228.

Mukhopadhyay, D., Kundu, A., and Sinha, S. (2010) ‘Introducing
Dynamic Ranking on WebPages Based on Multiple Ontology
Supported Domains’, International Conference on Distributed
Computing & Internet Technology (ICDCIT), Vol. 5966,
pp. 104–109.

Oluwatosin, H.S. (2014) ‘Client-Server Model’, IOSR Journal of
Computer Engineering, Vol. 16, No. 1, pp.67–71.

Oussous, A., Benjelloun, F-Z., Lahcen, A.A. and Belfkih, S. (2017)
‘Big Data technologies: survey’, Journal of King Saud University
– Computer and Information Sciences, Vol. 30, No. 4,
pp 431–448.

Pan, S., Xiong, L., Xu, Z., Chong, Y. and Meng, Q. (2018) ‘A
dynamic replication management strategy in distributed GIS’,
Computers and Geosciences, Vol. 112, pp.1–8.

Rehman, M.H., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y.
and Khan, S.U. (2016) ‘Big Data Reduction Methods: A Survey’,
Data Science and Engineering, Vol. 1, No. 4, pp.265–284,
Springer.

Sahoo, J., Mohammad, A., Glitho, S.R., Elbiaze, H. and Ajib, W.
(2016) ‘A Survey on Replica Server Placement Algorithms for
Content Delivery Networks’, IEEE Communications Surveys &
Tutorials, Vol. 19, No. 2, pp.1002–1026.

Sajana, T., Rani, C.M.S. and Narayana, K.V. (2016) ‘A Survey on
Clustering Techniques for Big Data Mining’, Indian Journal of
Science and Technology, Vol. 9, No. 3, pp.1–12.

Sanse, K. and Sharma, M. (2015) ‘Clustering methods for big data
analysis’, International Journal of Advanced Research
in Computer Engineering & Technology, Vol. 4, No. 3,
pp.642–648.

Shu, H. (2016) ‘Big data analytics: six techniques’, Geo-spatial
Information Science, Vol. 19, No. 2, pp.119–128.

Sreedhar, C., Kasiviswanath, N. and Reddy, P.C. (2017) ‘Clustering
large datasets using K-means modified inter and intra clustering
(KM‑I2C) in Hadoop’, Journal of Big Data, Vol. 4, No. 27,
pp.1–19, Springer.

Sultan, N. (2010) ‘Cloud computing for education: A new dawn?’,
International Journal of Information Management: The Journal
for Information Professionals, Vol. 30, No. 2, pp.109–116.

Tulgar, T., Haydar, A. and Ersan, I. (2018) ‘A Distributed K Nearest
Neighbor Classifier for Big Data’, Balkan Journal Of Electrical
& Computer Engineering, Vol. 6, No. 2, pp.37–43.

Wang, T., Yang, B., Huang, A., Zhang, Q., Gao, J., Yang, D., Tang, S.
and Jinzhong, N. (2009) ‘Dynamic Data Migration Policies for
Query-Intensive Distributed Data Environments’,
APWeb/WAIM’09 Proceedings of the Joint International
Conferences on Advances in Data and Web Management,
pp.63–75.

Yu, B. (2019) ‘Research on information retrieval model based on
ontology’, EURASIP Journal on Wireless Communications and
Networking, pp.1–8.

Zerhari, B., Lahcen, A.A. and Mouline, S. (2015) ‘Big Data
Clustering: Algorithms and Challenges’, International
Conference on Big Data, Cloud and Applications, Morocco.

