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1 Introduction 

It is always an easy task for all outranking methods including the preference ranking 
organisation method for enrichment evaluation (PROMETHEE) to rank completely a 
finite set of comparable alternatives. However, the task becomes quite challenging for 
these methods when there are incomparable options among the alternatives. In the 
literature, experts have expressed a reservation as to the way complete ranking of 
alternatives is achieved under PROMETHEE II of the PROMETHEE methodology. 
According to the experts, obtaining complete ranking of choices by simply subtracting 
the value of the entering flow from the value of the corresponding leaving flow of an 
alternative leads to the loss of information (Brans and Vincke, 1985; Brans et al., 1986; 
Figueira et al., 2005). In this article, an improved technique of complete ranking that  
is unveiling and more information preserving is proposed for the PROMETHEE 
methodology. The technique combines some essential features of the PROMETHEE I, II 
methods, and paraconsistent Pavelka style fuzzy logic (Turunen et al., 2010). Essentially, 
we slightly modified Definition 4.1 in Inusah and Turunen (2021) for those parts where 
the matrices M and N are not comparable; then, the theorems that follow from them are 
very similar to Theorem 4.1 in Inusah and Turunen (2021). 

The PROMETHEE methodology was developed by Brans in the early ‘80s as a 
formal approach for resolving decision problems characterised by several and sometimes 
conflicting criteria (Figueira et al., 2005). Further extensions were made to it by Brans 
and Mareschal in subsequent years (Figueira et al., 2005). 

Presently, the PROMETHEE I and II methods are among the famous multi-criteria 
decision making methods in the literature owing mainly to their simplicity,  
user-friendliness and versatility. The basic objective of the method is not necessarily to 
find out the most upright decision, but instead to identify the option(s) among others that 
optimally matches the aspirations and perception of the decision-maker. It is also today 
the method adopted by most decision-makers and experts in various fields to resolve 
choice and ranking problems. Apart from helping individuals to address simple decision 
making challenges, the PROMETHEE technique is most functional in facilitating group 
decision making in situations where a heterogeneous group of people per their 
qualification, experience, background, specialisation, perception, and judgement work 
together to rectify a given complex decision task. Over the years, the PROMETHEE 
method has chalked up numerous successes in its application across a wide range of 
fields including banking, industrial location, planning, tourism, telecommunication, 
healthcare, water resource, investment, military and many more. 

However, the method is not without some highs and lows. At the policy level, 
PROMETHEE assists decision makers to assess the strengths and weaknesses of various 
policy options and then provide a ranking of the options (De Keyser and Peeters, 1996). 
The assessment process allows for individual or group participation. In other words, it 
supports individual or group level decision making via dialogue and consensus building. 
This ranking makes it easier for decision makers to choose the most suitable policy 
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option for implementation. However, it is observed that after PROMETHEE has helped 
to identify the optimal policy option it lacks the capacity to implement and evaluate that 
policy. In terms of sustainability, PROMETHEE can compare the impacts of sustainable 
development dimensions, namely economic, social, environmental, financial and 
technological. 

Apart from being applicable to spatial data, PROMETHEE can be used to compare 
long-term impacts independently of the year under consideration. It can also compare 
impacts independently of global dimension (De Keyser and Peeters, 1996). Thus, 
PROMETHEE becomes a very important tool for the comparison of sustainable impacts 
since some of these dimensions cannot be expressed quantitatively. This is also to say 
that, PROMETHEE can handle at the same time both qualitative and quantitative criteria. 
However, the operational aspect of the method is quite involving and expensive. The 
human resources, time, data and data availability as well as the cost of applying the 
method cannot be easily determined and vary from one area of application to another. 
Moreover, high expert judgement is most often required to explain the findings. 

Although the processes involved in analysing preferences under PROMETHEE are 
tedious, complex and difficult to explain to laymen, the method has a high degree of 
transparency. Apart from the fact that the application of PROMETHEE is not limited by 
time and space, it can be applied to resolve decision problems associated with uncertainty 
and fuzzy input data. Nonetheless, ranking inconsistencies (rank reversal problem) may 
occur when new alternatives are introduced into the process (De Keyser and Peeters, 
1996). 

As another strength, PROMETHEE can also work in combination with other tools 
such as the geographic information system (GIS) and spatial models for assessment of the 
suitability of land use. The same way, it can be used to compare the impact of policy 
options induced by various tools that include physical assessment tools, modelling tools 
and environmental assessment tools. However, PROMETHEE falls short of strength to 
handle efficiently large decision-making problems: decision problems with numerous 
alternatives and criteria and sometimes with sub-criteria. In such cases, decision-makers 
tend to lose track of their line of analysis as the view of the whole problem gets blurred. 
Furthermore, PROMETHEE method does not proffer any formal way to determine 
weights of criteria, but instead assumes that decision-makers can fix the weights on their 
own. Another setback of the PROMETHEE method which is the focus of our article is 
the establishment of complete ranking (PROMETHEE II). It is observed that obtaining a 
complete ranking by subtracting the value of the global weakness of an alternative course 
of action from the value of its global strength gives rise to the loss of information (Brans 
and Vincke, 1985; Brans et al., 1986). 

Therefore, in this study, we introduce an improved version of the complete ranking 
(PROMETHEE II) that is more revealing and more informative than the traditional 
PROMETHEE II. 

Pavelka style logic is a broad logical system that covers different formal systems and 
embraces the assignment of graded truth-values to formulas (Belohlavek, 2015). This 
logic allows for, among other things, the drawing of approximate conclusions from 
collections of approximate premises. Pavelka logic, thus, constitutes a way by which the 
standard logic (classical logic) has been generalised. This logic admits and prepares, 
primarily, for the reality of having to work with exact, vague, and inexact circumstances 
of daily life. To this end, Pavelka logic provides a wider set of truth values by relaxing 
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the restriction on the two truth values 0 and 1 in order to incorporate assumptions, 
theorems, inference rules and derived formulas with different degrees of truth other than 
the two truth degrees associated with classical logic. 

A paraconsistent logic on the other hand is a logic in which contradictory items of 
information do not imply every single thing (Gabbay and Woods, 2007). This logic is 
built on the core belief that not all contradictions are false – some inconsistencies are 
true. In the literature, there are many different paraconsistent logics all designed to serve 
diverse purposes. The principle of explosion as found in Gabbay and Woods (2007), thus, 
creates a stark contrast between paraconsistent logic and classical logic. In fact, in 
classical logic, contradictions entail everything. The paraconsistent logic of interest in 
this article is the one developed by Belnap (1977), extended by Perny and Tsoukias 
(1998) and further advanced by Turunen et al. (2010) into what is called paraconsistent 
Pavelka style fuzzy logic. 

According to Belnap (1977), based on available proof (evidence) any proposition α 
can take one of four possible states or values: false, contradictory, unknown and true but 
not just the normal yes and no (or completely true and completely false values) we 
usually search for. This means: 

• Statement α is false if there is no proof in support of α but there is proof against α. 
So denoting falsehood by F, ‘there is proof’ by 1 and ‘there is no proof’ by 0, we 
represent this quantity as F = (0, 1). 

• α is contradictory (inconsistent) if there is proof in support of α and there is also 
proof against α. Denoting contradictory by C, we have C = (1, 1). 

• α is unknown if there is no proof in support of α and there is no proof against α. 
Representing unknown by U, U = (0, 0). 

• α is true if there is proof in support of α and there is no proof against α. We denote 
true here by T and so T = (1, 0). 

Later, this four valued logic was extended to cover the whole interval [0, 1] by Perny and 
Tsoukias (1998) to measure the magnitude of truth, falsehood, contradiction and 
unknown in every proposition (α). In other words, this fuzzy extension was made to 
create room for the above states to also assume intermediate values between 0 and 1 to 
depict partially true, partially contradictory, partially falsehood, and partially unknown in 
every logical formula. This partiality is largely caused by perhaps lack of information, 
incomplete information or the availability of excess information. The authors defined 
these four values on the interval [0, 1] as follows: 

( ) min( , 1 )= −F b aα  (1) 

( ) max(0, 1)= + −C a bα  (2) 

( ) max(0, 1 )= − −U a bα  (3) 

( ) min(1 , )= −T b aα  (4) 

From this point, Turunen et al. (2010) further developed this logic into a logical system 
known as paraconsistent Pavelka style fuzzy logic whose algebraic structure is the 
Łukasiewicz structure (an injective MV-algebra). The binary operations , ,∧ ⊕  and the 
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unary operation * are the operations of the Łukasiewicz structure so that for all ,a b  
*[0, 1], max(0, 1), min( , ), 1∈ = + − ∧ = = −a b a b a b a b a a  and min(1, ).⊕ = +a b a b  

Moreover, on this structure according to the authors, the F(α), C(α), U(α), and T(α) as 
defined by equations (1)–(4) are re-expressed as *( ) , ( ) , ( )= ∧ = =F a b C a b Uα α α  

* *a b  and T(α) = a ∧ b*. Hence, in terms of a 2-by-2 matrix, for every a, b ∈ [0, 1], we 
have 

*

* * *

( ) ( )
( ) ( )

∧  
=    ∧   




F C a b a b
U T a b a b

α α
α α

  

The pair of values (a, b) in [0, 1] is called an evidence couple. Thus, the evidence 
couples: F = (0, 1), C = (1, 1), U = (0, 0), and T = (1, 0) in terms of evidence matrices 
are: 

1 0 0 1 0 0 0 0
, ,  and 

0 0 0 0 1 0 0 1
       

= = = =       
       

F C U T  

In this article, we seek to link paraconsistent Pavelka style fuzzy logic to the 
PROMETHEE I and II methodology and then demonstrate how such a synergy can be 
used to augment the performance of the PROMETHEE method. 

Many multi-attribute decision making (MADM) methods such as PROMETHEE, 
TOPSIS, ELECTRE and others draw their truth values from the real unit interval [0, 1]. 
In particular, the PROMETHEE method derives the values of the leaving flow and the 
entering flow from the real unit interval [0, 1]; the TOPSIS acquire its values of relative 
closeness to the ideal solution from within the interval [0, 1] and in the ELECTRE 
method, both the concordance and the discordance thresholds are well within this same 
interval [0, 1]. This implies that the values of the quantities referred to in these  
three methods are not always 0 or 1 but could also be other values between 0 and 1. 
Similarly, Pavelka’s generalisation of the two-valued logic is based on the same notion of 
the real unit interval [0, 1] as the truth value set albeit equipped with a complete  
MV-algebraic structure. This means that in the field of MADM, particularly in the 
PROMETHEE method we can equip the truth value set [0, 1] with a complete  
MV-algebraic structure so as to make the decision making method benefit immensely 
from the strengths of the Pavelka style logic. For instance, by endowing the 
PROMETHEE approach with some features of the paraconsistent Pavelka style fuzzy 
logic as done in this work, we obtain the right algebraic framework to advance our 
definitions, theorems and proofs in a way that adds meaning and value to the outranking 
method. 

In this study, we equip the truth value set L (the interval [0, 1]) for the leaving and 
entering flows with the Łukasiewicz structure which is an injective MV-algebra to have  
a Pavelka style fuzzy logic. Furthermore, via the idea of evidence couples, every 
alternative course of action in the PROMETHEE method is viewed from the perspective 
of the four possible values (false, contradictory, unknown and truth) and by so doing a 
paraconsistent dimension as introduced by Turunen et al. (2010) is added to the Pavelka 
style fuzzy logic to produce what is called the paraconsistent Pavelka style fuzzy logic. 
Based on this framework, we introduce our definitions, theorems and proofs. Moreover, 
essential concepts in the paraconsistent Pavelka style fuzzy logic to be brought to bear on 
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the PROMETHEE approach are well and correctly interpreted in the parlance of the 
PROMETHEE methodology. The interpretation is as follows: 

1 Formula: Every formula α is regarded in PROMETHEE as a preference statement 
about an alternative course of action in relation to others, and such a statement is 
evaluated through a given set of criteria under the PROMETHEE method. For 
example, α can represent the statement: alternative Ak is preferable to alternative Al. 

2 The evidence in favour of α and the evidence against α which we denoted in the 
paraconsistent Pavelka style fuzzy logic by a and b respectively are synonymous 
with what we call the leaving flow (φ+(α)) and the entering flow (φ–(α)) respectively 
under the PROMETHEE method. 

3 A given alternative α can be assigned one of the following four possible values 
rather than the usual two possibilities – only true or only false: 
• If there is leaving flow (φ+(α)) for α and no entering flow (φ–(α)) for α, then α 

is assigned the value true. 
• If there is no leaving flow (φ+(α)) for α and there is entering flow (φ–(α)) for α, 

then α is assigned the value false. 
• If there is leaving flow (φ+(α)) for α and at the same time there is entering flow 

(φ–(α)) for α, then α is given the value contradictory. 
Note that, alternatives in most real decision making problems share this 
contradictory characteristic. That is, most alternatives in each outranking 
decision problem are endowed with both leaving and entering flows. 

• If there is neither leaving flow (φ+(α)) nor entering flow (φ–(α)) for α, then α is 
allotted the value unknown. 

4 The truth value set L is the Łukasiewicz structure on the real unit interval [0, 1] 
which is an injective MV-algebra. Thus, in paraconsistent Pavelka style fuzzy logic, 
the two evidences: a, b for α are in L and in the parlance of the PROMETHEE 
technique, we say φ+(α), φ–(α) are in L. In other words, the evidence couple φ+(α), 
φ–(α) for the alternative α is such φ+(α), φ–(α) ∈ L × L. 

5 The set of injective MV-algebra valued evidence couples φ+(α), φ–(α) generates a 
corresponding set   of evidence matrices which is also an injective MV-algebra. 
The set   is expressed as 

( )
( ) ( ) ( )

*

* * *

( ) ( ) ( ) ( )
| ( ), ( ) .

( ) ( ) ( ) ( )

+ − + −
+ −

+ − + −

  ∧  = ∈ × 
 ∧   




 L L

φ α φ α φ α φ α
φ α φ α

φ α φ α φ α φ α
 

6 Since the truth value set L is the Łukasiewicz structure on the real unit interval [0, 1], 
for all φ+(α), φ–(α) ∈ L, we have ( ) ( ) max[0, ( ) ( ) 1], ( )+ − + − += + −φ α φ α φ α φ α φ α  

( ) min[ ( ), ( )]− + −∧ =φ α φ α φ α  and (φ+(α))* = 1 –φ+(α). 

7 Eventually, we establish two rankings for the finite set of alternatives: one of the  
two rankings is based on the falsehood value F(α) = (φ+(α))* ∧ φ–(α) of the evidence 
matrix, while the other ranking is according to the truth value T(α) = φ+(α) ∧ (φ–(α))* 
of the same evidence matrix. 
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Thus unlike the traditional PROMETHEE approach, re-expressing the positive and the 
negative outranking flows in the way of the paraconsistent Pavelka logic enables 
decision-makers to have a deeper understanding of the pair of values φ+(α), φ–(α) in a 
manner that brings about flexibility in the ranking process. Flexibility emanates from the 
fact that this approach offers users two ranking procedures and based on the attitude of 
users towards uncertainty they opt for one of the two ways or even both. This, therefore, 
empowers decision-makers to make well-informed decisions that lead to maximal gains 
or minimal losses. In other words, this novel approach helps decision-makers in a much 
better way to figure out the course of action that befits their goal and perception of the 
decision problem. The rest of the paper is organised as follows: Section 2 briefly 
describes PROMETHEE I and II, Section 3 describes the algorithm of the improved 
technique, in Section 4, we apply the novel technique to a real life decision problem, in 
Section 5, we discuss the findings, and in Section 6, we conclude. 

2 PROMETHEE I and II 

2.1 The PROMETHEE methodology 

2.1.1 Decision model construction 
Suppose we have a finite set of alternative courses of action represented by A = {Ai}; a 
finite set of criteria denoted by C so that C = {cj} and a set of weights denoted by W (i.e., 
W = {wj}) where i = 1, ···, n, j = 1, ···, m and wj, as the weight of the criterion cj. What is 
the optimal alternative course of action? 

The genesis of the PROMETHEE methodology is the evaluation table. The table is 
composed of information obtained from the three sets defined above (A, C, W) as well as 
the performance score of every decision alternative on each criterion cj. 

2.1.2 The weight 
The weight signifies the importance, significance or value of a given criterion to the 
decision maker. Although PROMETHEE has not provided hard and fast rules or 
guidelines for determining the weights of criteria, it is believed that the decision-maker 
will be able to assign the right weight to the various criteria. As a way of assisting in this 
process, various weight calculation methods have been proposed in Macharis et al. 
(2004). 

2.1.3 The preference function 
The preference degrees are the basis of the PROMETHEE method. A preference degree 
takes a value within the real unit interval [0, 1] and indicates the extend to which  
one alternative course of action is preferred to another. Hence, when the preference 
degree is 0 means there is no preference between a pair of alternatives. And when the 
preference degree is 1 implies a total preference of one alternative over another. 
Intermediate values between 0 and 1 represent partial preference degrees. The preference 
degree on a criterion for any pair of alternatives is calculated through a prescribed 
preference function that translates the difference of the evaluations of the pair on the 
criterion into a real unit value lying in the interval [0, 1]. The most important 
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consideration in the process of determining the preference degree on a criterion is the 
decision maker’s perception or how he or she regards the differences between the 
evaluations of pairs of alternatives on the criterion. Thus, the preference function is what 
the decision maker or the decision expert who is assisting the decision-maker uses to 
calculate the preference degrees on a criterion. The deviation for various criteria cj is 
calculated via 

( ) ( ) ( )
( ) ( ),

 −=   − −  

j k j l
j k l

j k j l

c A c A
d A A

c A c A
 

where the deviation cj(Ak) – cj(Al) is for a maximisation criterion cj, and –[cj(Ak) – cj(Al)] 
is for a minimisation criterion cj. 

The value of the preference degree denoted here by Pj(Ak, Al) for the criterion cj is 
deduced through the equation Pj(Ak, Al) = Fj[dj(Ak, Al)], for 0 ≤ Pj(Ak, Al) ≤ 1 and Fj as a 
non-decreasing preference function. 

To help decision-makers in their choice of preference functions, six basic types of 
generalised preference functions have been provided as pointed out in Brans and Vincke 
(1985), Brans et al. (1986) and Figueira et al. (2005). These are type 1: usual criterion, 
type 2: quasi-criterion, type 3: criterion with linear preference, type 4: level criterion, 
type 5: criterion with linear preference and indifference area, and type 6: Gaussian 
criterion. Each of these preference functions has 0 or 1 or 2 parameters. These parameters 
are denoted by q, p and s. The q and p are the threshold of indifference and the threshold 
of strict preference, respectively. The parameter s however is the point of inflexion and 
the only parameter for the Gaussian preference function. 

Therefore, these three items of information: the evaluation table, weight, and the 
preference function together dictate the preference structure of the decision-maker. In 
fact, in the next subsection, a step by step details of this method are provided. 

A step by step guide on the implementation of the PROMETHEE method is captured 
in the following algorithm. 

2.1.4 The algorithm of the PROMETHEE I and II 
The algorithm for ranking of alternatives is as follows: 

1 Complete the evaluation table by providing the list of decision alternatives, the list of 
criteria (attributes), weights of the available criteria and the performance scores of 
each decision alternative over all the criteria. 

2 Compute the deviations of all pairs of alternatives under each attribute cj through the 
equations: 
a dj(Ak, Al) = cj(Ak) – cj(Al) for each maximising criterion cj, 
b dj(Ak, Al) = –[cj(Ak) – cj(Al)] for each minimising criterion cj. 

3 Choose a preference function Fj from the six recommended prefence functions in 
Section 2.1.3 for each criterion cj and determine the preference degree via Pj(Ak, Al) 
= Fj[dj(Ak, Al)] for each Ak, Al ∈ A. 

4 Compute the aggregate preference index of the decision alternative Ak over Al for all 
attributes cj via the equation: 
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( ) ( )
1

, , .
=

=m
k l j j k lj

π A A w P A A  

5 Compute the leaving and the entering flows of the option Ak over every other option 
Al via the equations 

( ) ( )1 , , 1, ,
1

+

∈

= =
−  

l

k k l
A A

A π A A k n
n

φ  

( ) ( )1 , , 1, , ,
1

−

∈

= =
−  

l

k k l
A A

A π A A k n
n

φ  

respectively. 

6 PROMETHEE I: Perform partial ranking according to the following three rules: 
a AkPAl if one of the following holds: 

• φ+(Ak) > φ+(Al) and φ–(Ak) < φ–(Al) 
• φ+(Ak) > φ+(Al) and φ–(Ak) = φ–(Al) 
• φ+(Ak) = φ+(Al) and φ–(Ak) < φ–(Al). 

b AkIAl if φ+(Ak) = φ+(Al) and φ–(Ak) = φ–(Al). 
c AkRAl if one of the following two conditions holds: 

• φ+(Ak) > φ+(Al) and φ–(Ak) > φ–(Al) 
• φ+(Al) > φ+(Ak) and φ–(Al) > φ–(Ak) 

where P, I, R represent preference, indifference and incomparability, 
correspondingly. Furthermore, in case there is one or more pairs of alternatives that 
are not comparable, it is proposed that one proceeds to 7. 

7 Determine the net flow for each option using the equation: 

( ) ( ) ( )  for every  in .+ −= −i i i iA A A A Aφ φ φ  

8 PROMETHEE II: Conduct a complete ranking according to the following two rules: 
a AkPAl iff φ(Ak) > φ(Al) 
b AkIAl iff φ(Ak) = φ(Al) for every Ak, Al in A. 

3 The algorithm of the improved technique 

In reference to the decision model constructed in Section 2.1.1, the algorithm of 
incorporating the essential features of paraconsistent Pavelka style fuzzy logic into the 
PROMETHEE method is as follows: 

1 Complete the evaluation table by providing the list of decision alternatives, the list of 
criteria (attributes) and their respective weights as well as the performance scores of 
each decision alternative over all the attributes. 
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2 Compute the deviations of all pairs of alternatives under each attribute cj through the 
equations: 
a dj(Ak, Al) = cj(Ak) – cj(Al) for each maximising criterion cj 
b dj(Ak, Al) = –[cj(Ak) – cj(Al)] for each minimising criterion cj. 

3 Choose a preference function Fj from the six recommended prefence functions in 
Section 2.1.3 for each criterion cj and determine the preference degree via Pj(Ak, Al) 
= Fj[dj(Ak, Al)] for each Ak, Al ∈ A. 

4 Compute the aggregate preference index of the decision alternative Ak over Al for all 
attributes cj via the equation: 

( ) ( )
1

, , .
=

=m
k l j j k lj

π A A w P A A  

5 Compute the leaving and the entering flows of the option Ak over every other option 
Al via the equations 

( ) ( )1 , , 1, ,
1

+

∈

= =
−  

l

k k l
A A

A π A A k n
n

φ  

( ) ( )1 , , 1, , ,
1

−

∈

= =
−  

l

k k l
A A

A π A A k n
n

φ  

respectively. 

Recall that in paraconsistent logic, the pair φ+(Ak), φ–(Ak) is referred to as the 
evidence couple. 

6 Any couple φ+(Ak), φ–(Ak) induces a corresponding evidence matrix we may denote 
by 

( ) ( )
( ) ( )

 
=  
 

k k
k

k k

F A C A
M

U A T A
 

where Ak is a specific alternative course of action. 

7 The set of evidence matrices for all options constitute a truth-value set, and so any 
two options are comparable by means of their appropriate evidence matrices. For 
instance, assume M1, M2 are the matrices for options A1, A2, respectively. Then, we 
say that option A2 is preferable to option A1 if M1 ≤ M2. Moreover, M1 ≤ M2 provided 

1 2 21
0 0

1 .
0 1

⊥  
 = ⊕ = = =  

 
M M M M T  

For more information about the binary operation , see Inusah and Turunen (2021). 

In this truth value set, the matrix for F which is 
1 0
0 0
 
 
 

 is the bottom element, and 

the matrix T is the top element. However, there may be some incomparable options 
and so their respective matrices too in the truth set will not be comparable. Thus, the 
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set of evidence matrices is not in a linear order. In Definitions 3.1 and 3.2, we show 
how this incomparability challenge is resolved. 

In reality, it is reasonable to compare a pair of alternative courses of action say Al, Ak 
through their corresponding evidence matrices M, N. Suppose the evidence couples 
(a, b), (x, y) induce the evidence matrices M, N correspondingly. We say that M ≤ N 
provided a ≤ x and y ≤ b. This further implies x* ≤ a*, b* ≤ y*. In fact, this kind of 
relationship between M, N shows that there is more proof (evidence) in support of Ak 
than the evidence in support of Al, and there is more evidence against Al than there is 
against Ak. Furthermore, from the inequalities a ≤ x, y ≤ b, x* ≤ a*, and b* ≤ y*, it is 
clear that T(M) = a ∧ b* ≤ x ∧ y* = T(N) and F(N) = x* ∧ y ≤ a* ∧ b = F(M), where 
T(M) and F(M) are the abbreviations of T(Al) and F(Al), respectively. Also, T(N) and 
F(N) are correspondingly the abbreviations of T(Ak) and F(Ak). However, the 
converse does not hold in general. That is, from T(M) ≤ T(N), F(N) ≤ F(M), we 
cannot conclude that M ≤ N. For example, consider a, b = 0.1, 0.8, x, y  
= 0.2, 0.9. Indeed, these are incomparable evidence couples. But, they produce the 
following comparable matrices M, N 

0.8 0 0.8 0.1
, .

0.1 0.1 0 0.1
   

= =   
   

M N  

If M, N are incomparable, then the problem gets compounded and to overcome the 
complexity we propose two definitions and their respective theorems as follows: as 
previously mentioned, we slightly modified Definition 4.1 in Inusah and Turunen 
(2021) for those parts where the matrices M and N are not comparable; then, the 
theorems that follow from them are very similar to Theorem 4.1 in Inusah and 
Turunen (2021). 

Definition 3.1: Let two options Al and Ak be correspondingly assigned the evidence 
couples a, b and x, y which generate the corresponding evidence matrices M and 
N. We say that Ak is preferable to Al written as l F kA A  whenever: 
1 M ≤ N 
2 ≤≥M N  and T(M) = a ∧ b* < x ∧ y* = T(N) 

3 * *, ( ) ( )≤≥ = ∧ = ∧ =M N T M a b x y T N  and F(N) < F(M). 

In particular, if M = N, then Ak and Al are equally preferable and it is represented by 
Ak ≡T Al. If , ( ) ( )≤≥ =M N T M T N  and F(M) = F(N), then Ak and Al are weakly 
equally preferable and it is written as Ak ~T Al. 

Explanation: Let two options Al and Ak be correspondingly assigned the evidence 
couples a, b and x, y which generate the corresponding evidence matrices M and 
N; all possible evidence couples and for that matter evidence matrices for the  
two alternatives Al, Ak can be put into two categories: 
a Comparable evidence couples (or matrices): Whenever the evidence couples for 

the alternatives Al, Ak are comparable, then their evidence matrices M, N are also 
comparable. In deed, M, N are comparable if either M ≤ N or N ≤ M. Moreover, 
M ≤ N if and only if 
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0 0
1 .

0 1
⊥  

⊕ = =  
 

M N  

Similarly, N ≤ M if and only if 

0 0
1 .

0 1
⊥  

⊕ = =  
 

N M  

For example, suppose alternatives Al, Ak are represented by the evidence 
matrices M, N respectively which in turn are generated by the evidence couples 
0.2, 0.5, 0.4, 0.2, respectively. Which of these two alternatives dominates the 
other? From the evidence couples, it is clear that the two alternatives are 
comparable and in fact, alternative Ak is preferable alternative Al. Now, we show 
the preferability of Ak to Al using their respective evidence matrices M, N. Given 
the evidence couple for M to be 0.2; 0.5, the evidence couple for the matrix  
M⊥ is 0.2*, 0.5* = 0.8, 0.5. Hence, the evidence couple for the matrix M⊥ ⊕ N 
is 0.8 0.4, 0.5 0.2 1, 0 . ⊕  =    The corresponding evidence matrix is 

*

* * *

0 01 0 1 0
.

0 11 0 1 0
⊥ ∧   

⊕ = =   ∧   




M N  

Thus, M ≤ N. This means Ak preferable to Al. Conversely, the matrix N⊥ is 
obtained through the evidence couple 0.4, 0.2 by 0.4*, 0.2* = 0.6, 0.8. So, 
the evidence couple for the matrix N⊥ ⊕ M is 0.6 0.2, 0.8 0.5 0.8, 0.3 . ⊕  =    
The corresponding evidence matrix is 

*

* * *

0.2 0.1 0 00.8 0.3 0.8 0.3
.

0 0.7 0 10.8 0.3 0.8 0.3
⊥ ∧     

⊕ = = ≠     ∧     




N M  

Thus, ≤N M  meaning Al is not preferable to Ak. Hence, Ak is preferable to Al. 
Furthermore, if Al and Ak have the same evidence couple as 0.8, 0.3, then their 
evidence matrices will be the same as 

0.2 0.1
.

0 0.7
 

= =  
 

M N  

In this case, we conclude that the alternatives Al and Ak are equally preferable. 
b Incomparable evidence couples (or matrices): When the evidence couples 

associated with alternatives Al and Ak are incomparable, their evidence matrices 
too are incomparable. That is, for every matrices , ; ≤M N M N  and .≤N M  
In other words, the matrices 

0 0
0 1

⊥  
⊕ ≠  

 
M N  

and 

0 0
.

0 1
⊥  

⊕ ≠  
 

N M  
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Therefore, under incomparable situations, we can establish the preferred 
alternative between any two alternatives Al and Ak either by means of the truth 
values (i.e., the fourth component of every matrix) or by means of the falsehood 
values (i.e., the first component of every matrix). 
So, via the truth values, we identify the dominant alternative as follows: 
1 If the evidence matrices M, N for the alternatives Al, Ak respectively are 

incomparable (i.e., )≤≥M N  and T(M) < T(N), then Ak is preferable to  
Al. For example, assume the evidence couples for Al, Ak are 0.2, 0.1 and  
1, 0.2, respectively. Obviously, from the evidence couples, alternatives  
Al, Ak are incomparable. Now, if M, N are the corresponding evidence 
matrices, then 

0.1 0
0.7 0.2
 

=  
 

M  

and 

0 0.2
.

0 0.8
 

=  
 

N  

Thus, ,≤≥M N  but T(M) = 0.2 < 0.8 = T(N). Hence, Ak is preferable to Al 
(i.e., ).l T kA A  

2 If the evidence matrices M, N for Al, Ak respectively are incomparable 
(i.e., )≤≥M N  but T(M) = T(N) and F(N) < F(M), then Ak is preferable to 
Al. For example, if the evidence couples for Al, Ak are 0.4, 0.7 and 0.3, 
0.2 respectively, then from the two evidence couples, it is clear that Al, Ak 
are incomparable. The matrices are, 

0.6 0.1
0 0.3

 
=  
 

M  

and 

0.2 0
.

0.5 0.3
 

=  
 

N  

Hence, T(M) = T(N) = 0.3 and F(N) = 0.2 < 0.6 = F(M). Therefore, 
.l T kA A  

3 If the alternatives Al, Ak are incomparable (i.e., )≤≥M N  but T(M) = T(N) 
and F(M) = F(N), then we conclude that Al, Ak are weakly equally 
preferable. For example, let us assume that the alternatives Al, Ak are 
assigned the evidence couples 0.3, 0.6 and 0.4, 0.7, respectively. Then 
from the two evidence couples, it is observed that Al, Ak are incomparable. 
The corresponding evidence matrices are 

0.6 0
0.1 0.3
 

=  
 

M  
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and 

0.6 0.1
.

0 0.3
 

=  
 

N  

So, from M, N, we have T(M) = T(N) = 0.3 and F(M) = F(N) = 0.6. Hence, 
the alternatives Al, Ak are weakly equally preferable. 

Therefore, items a and b cover all the possible evidence matrices that any given  
two alternatives, say Al, Ak can generate from their evidence couples. 

Theorem 1: The relation ≡T is an equivalence relation with respect to the set of 
options denoted by A. However, whereas the relation ~T is not an equivalence 
relation, that of T  is a quasi-order relation on A. 

The proof of Theorem 1 is found in Appendix A. 

Definition 3.2: Let two options Al and Ak be correspondingly assigned the evidence 
couples a, b and x, y which generate the corresponding evidence matrices M and 
N. We say that Ak is preferable to Al written as l F kA A  whenever: 
1 M ≤ N 
2 ≤≥M N  and F(N) = x* ∧ y < a* ∧ b = F(M) 

3 * *, ( ) ( )≤≥ = ∧ = ∧ =M N F N x y a b F M  and T(M) < T(N). 

In particular, if M = N, then Ak and Al are equally preferable and it is represented by 
Ak ≡F Al. If , ( ) ( )≤≥ =M N F M F N  and T(M) = T(N) then, Ak and Al are weakly 
equally preferable and it is written as Ak ~F Al. 

The explanation of Definition 3.2 is similar to that of Definition 3.1. In fact, the  
two definitions are more less dual. 

However, it is important to point out that Definitions 3.1 and 3.2 present different 
relations. For instance, assume the evidence matrices M, N are induced by the 
couples 0.1, 0.5, 0.4, 0.7, respectively. Then, M, N are not comparable and T(M) 
= 0.1 ∧ 0.5 = 0.1 < 0.3 = 0.4 ∧ 0.3 = T(N) whereas, ( ) 0.6 0.7 0.6 0.5= ∧ = <F N  

0.9 0.5 ( ).= ∧ = F M  

Theorem 2: The relation ≡F is an equivalence relation with respect to the options in 
A. However, whereas the relation ~F is not an equivalence relation, the relation F  
is a quasi-order relation on A. 

The proof of Theorem 2 is in Appendix B. 

It is also observed that almost all the incomparable matrices M, N we encounter in 
practical applications have the order T(M) < T(N) and F(M) < F(N). But in theory, 
this is not always the case. However, we have the following proposition. 

Proposition 3: If ≤≥M N  and T(M) ≤ T(N), then F(M) < F(N) or F(N) < F(M) or 
F(M) = F(N). 

Proof: The proof of Proposition 3 is trivial. □ 
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As an example to corroborate this proposition, consider that matrices M, N are 
generated respectively by the evidence couples: 
1 0.3, 0.1, 0.6, 0.2 
2 0.2, 0.1, 1, 0.2 
3 0, 0, 1, 0.1. 

Remark 1: In practice, most incomparable matrices M, N with T(M) < T(N) also have 
F(M) < F(N). Thus, between two evidence matrices M, N; if N is observed to have 
higher truth and falsehood values than M then they are incomparable. 

8 Rank the alternatives based on Definition 3.1 or rank them based on Definition 3.2 or 
both. 

4 Ranking five mobile phone networks in the national capital, Accra – 
Ghana 

We acquired the data about the quality of service to customers by five mobile phone 
networks operating in the Greater Accra region of Ghana from the National 
Communication Authority (NCA). 

• Alternatives: In order not to reveal the true identities of the five mobile networks, we 
denote them by A1, A2, A3, A4 and A5. 

• Criteria: The criteria and weights of criteria as determined by the authority are call 
setup time (denoted by C1), call completion rate (C2), call congestion rate (C3) and 
call drop rate (C4). The criteria have the same weight of 0.25. 

• Evaluation table: The table showing the service quality of each of the five mobile 
operators is Table 1. 

• Preference function: The choice of a preference function is determined largely by the 
features of every application. The Gaussian criterion has been chosen for this data. 
The Gaussian criterion or the Gausssian preference function is a continuous and 
increasing preference function for all deviations on a criterion. Unlike other 
preference functions, the increase in this case follows an exponential function. This 
function has only one parameter s which is the point of inflection. In terms of the 
threshold values q, p, s is an intermediate value between them. 
1 Ranking by the usual PROMETHEE method. 

Based on the PROMETHEE procedure, we generated the following pairs of 
leaving and entering flows φ+(Aj), φ–( Aj) for each alternative: 

1 2 3 40.13, 0.21 , 0.43, 0.0 , 0.15, 0.62 , 0.19, 0.12 ,=   =   =   =  A A A A  
5 0.19, 0.15 .=  A  

From the pairs, it is clear that A1 and A3 are incomparable, i.e., A1RA3. Therefore, 
we apply PROMETHEE II, and the net flows are as follows: 

( ) ( ) ( ) ( ) ( )1 2 3 4 50.08, 0.43, 0.47, 0.07 and 0.04.= − = = − = =A A A A Aφ φ φ φ φ  

The corresponding complete ranking is: 
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2 4 5 1 3 .A P A P A P A P A  

Hence, A2 has emerged the optimal alternative. 
2 Ranking by the proposed integrated approach. 

The evidence couples A1 = 0.13, 0.21, A2 = 0.43, 0.0, A3 = 0.15, 0.62,  
A4 = 0.19, 0.12, A5 = 0.19, 0.15 generated the following evidence matrices: 

1 2 3

4 5

0.21 0 0 0 0.62 0
, , ,

0.66 0.13 0.57 0.43 0.23 0.15
0.12 0 0.15 0

, .
0.69 0.19 0.66 0.19

     
= = =     
     
   

= =   
   

A A A

A A
 

Now, we rank the set of alternatives A using Definition 3.1 and Theorem 1. By 
Definition 3.1, if there are incomparable evidence matrices like A1 and A3, then 
the one with the higher truth value is preferable. Studying the evidence matrices, 
it is clear that there are neither equally preferable options (Ak ≡T Al) nor weakly 
equally preferable ones (Ak ~T Al). So, the third relation, Ak is preferable to Al, 
denoted by l T kA A  has been analysed and the findings have revealed the 
following complete ranking of the set of alternatives, A: 

1 3 5 4 2.   T T T TA A A A A  
Similarly, if the decision maker prefers a lower falsehood value, then we go by 
Definition 3.2 and Theorem 2 and the resulting complete ranking of the finite set 
A is as follows: 

3 1 5 4 2.   F F F FA A A A A  

Table 1 Evaluation table of service quality 

Criteria Type of criteria Alternatives A1, A2, A3, A4, A5 
C1 Min. 15.12, 12.09, 11.67, 13.86, 15.28 
C2 Max. 80, 96, 41, 81, 88 
C3 Min. 17, 3, 27, 12, 10 
C4 Min. 3, 1, 32, 8, 2 

5 Discussion 

From the analysis of the case study, it is clear that the ranking obtained using  
Definition 3.1 is slightly different from the one obtained by Definition 3.2, and the 
difference is about the worst option between A1 and A3. Whereas Definition 3.1 has 
settled on A1 as the worst one, Definition 3.2 says otherwise. Incidentally, both  
Definition 3.2 and the normal PROMETHEE method have delivered the same ranking. 
Nonetheless, ranking by each of the three ways, has confirmed A2 as the optimal 
alternative. 

More importantly, by our novel approach, a set of alternatives can be ranked in  
three distinct ways: either by means of the truth values of the various alternatives as 
found in their corresponding evidence matrices or by their falsehood values or both. 
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Using the truth value procedure, the option or options with the highest truth value is 
adjudged the optimal alternative. However, by falsehood values, the alternative or 
alternatives with the least falsehood value are regarded the most efficient options. This 
implies by applying either of these two procedures (truth values or falsehood values) first 
the other one can be used to confirm the ranking emanating from the first procedure,  
and this thus makes our new technique superior to the usual PROMETHEE method. 
Moreover, where there are incomparable alternatives, it is often the case in real life 
applications that the alternative with the higher truth value is as well the alternative with 
the higher falsehood value (see Remark 1) and in such a circumstance, risk-averse 
decision-makers will opt for ranking based on falsehood values so that the choice with 
the least falsehood value becomes the best one. 

Risk-neutral and risk-seeking users, on the other hand, will prefer ranking by truth 
values and settle on the alternative with the greatest truth value. Hence, decision-makers 
who adopt this modified technique are able to make better informed choices and take 
responsibility for the outcome of their decisions as this approach (via the truth and 
falsehood values) gives decision-makers a clue as to the degree of uncertainty or risk 
associated with each procedure they choose. Further, if the values of the unknown, and 
contradiction in the 2-by-2 matrix are deemed extremely high, particularly the value of 
the contradiction then it is a tacit advice or indication that further and more efficient 
information seeking and screening tools, where possible, need to be employed for more 
factual information. This way, values of these two components decrease as they get 
metamorphosed (converted) into the falsehood and truth values for more accurate 
ranking. The same cannot be said about the usual PROMETHEE method, which after 
delivering a complete ranking for a set of alternatives with incomparable options nothing 
is known or can be said about them again – every item of information gets lost. 

It is also essential to add that when all the alternatives in a set are comparable, both 
the traditional PROMETHEE and the proposed method generate the same ranking. In 
fact, ordering by truth values and by falsehood values yield the same ranking as the 
ordinary PROMETHEE technique. Therefore, the proposed method herein is at least as 
good as the standardised PROMETHEE I and II and can also at least serve as a close 
substitute for it. 

6 Conclusions 

An enhanced method of complete ranking under the PROMETHEE methodology has 
been introduced. The idea is that every option Al has a collection of proof (evidence) in 
support of Al, and a collection of evidence that is not in support of Al. So, the collection of 
evidence in support of Al and the one that is not in support of Al are respectively the pros 
and the cons of Al. By means of the aggregate preference indices, these evidences are 
combined to form an evidence couple φ+(Al), φ–(Al) for the option Al. In the parlance of 
the PROMETHEE technique, the components of the evidence couple are correspondingly 
called the positive and the negative outranking flows. This evidence couple φ+(Al),  
φ–(Al) generates an evidence matrix M for Al. Naturally, option Ak with the evidence 
couple φ+(Ak), φ–(Ak) and a corresponding evidence matrix N is better than Al if there is 
more evidence in support of Ak than there is in support of Al and there is less evidence not 
in support Ak than there is not in support of Al. This is what we have when the 
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relationship between M, N is such that M ≤ N. This implies Ak weights better than Al on 
both the scales of the pros and the cons. However, if there is more evidence in support of 
Ak than there is in support of Al and at the same time there is more evidence not in support 
of Ak than there is not in support Al or the other way round, then the two matrices M, N 
are not comparable. When we are faced with such a scenario, we can obtain the preferred 
option in one of two-ways: either we compare the truth values of M, N and choose the 
matrix with the higher truth value or we compare the falsehood values of M, N and opt 
for the matrix with the lower falsehood value. Both ways generate a complete order for 
the available options. We can also implement both ways to verify or confirm what the 
possible best option or best options are. Moreover, using both ways becomes more 
imperative when the decision maker is interested in identifying the best few alternatives 
in endeavours such as searching for the best energy mix for electricity generation in an 
economy. Furthermore, this novel technique is more informative in the sense that it 
reveals to us as decision-makers the size of each of the four possible states (values), 
namely falsehood, contradictory, unknown and truth in any given evidence couple 
φ+(Al), φ–(Al) that users can lean on to make more reasonable and more productive 
decisions. 

As a way of showing the efficiency of this novel technique, a real case study on  
five telecommunication networks in Accra, Ghana has been studied and the findings 
compared with that of the traditional PROMETHEE I and II. 
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Appendix A 

The proof of Theorem 1 

Proof: It is obvious that the relation ≡T is an equivalence relation. For the reason that  
Al ~T Ak, Ak ~T Al do not mean that Al ~T Al, we conclude that ~T is not symmetric, and it is 
not reflexive either. Thus, ~T is not an equivalence relation. The relation ,T  on the 
other hand, defines a quasi-order relation since in the first place it is obviously reflexive 
for all Ai ∈ A. Secondly, we prove that it is transitive by supposing that l T kA A  and 

,k T zA A  where Az is denoted by the matrix P which is in turn generated by the couple 
p, q. Then, to prove the fact that l T zA A  for all Al, Ak, Az ∈ A, we have a number of 
cases and sub-cases to look at. These cases and sub-cases are as follows: 

Case 1 The case M ≤ N, N ≤ P trivially implies M ≤ P, therefore .l T zA A  

Case 2a If , ,≤≥ ≤≥M N N P  and T(M) = a ∧ b* < x ∧ y* = T(N), and T(N) = x ∧ y*  
< p ∧ q* = T(P), then T(M) = a ∧ b* < p ∧ q* = T(P). Now, the assumption  
P ≤ M is equivalent to p ≤ a, b ≤ q, where the second (in-)equality implies  
q* ≤ b*, which in turn implies T(P) = p ∧ q* ≤ a ∧ b* = T(M), a contradiction. 
Therefore, either M ≤ P or .≤≥M P  In both cases, .l T zA A  

Case 2b Let ≤≥M N  and T(M) < T(N), N ≤ P. There are two sub-cases: 

Sub-case I (i) a < x, (ii) b < y, (iii) y* < b*, (iv) a ∧ b* < x ∧ y*, (v) x ≤ p,  
(vi) q ≤ y, (vii) y* ≤ q*. 
By (i) and (v), a < p. If q ≤ b, then M ≤ P, hence .l T zA A  If  
b < q, then .≤≥M P  By (v) and (vii), we observe x ∧ y* ≤ p ∧ q*. 
Recalling (iv), we have T(M) < T(P). Therefore, .l T zA A  

Sub-case II (i) x < a, (ii) y < b, (iii) b* < y*, (iv) a ∧ b* < x ∧ y*, (v) x ≤ p,  
(vi) q ≤ y, (vii) y* ≤ q*. 
By (vi) and (ii), q < b. If a ≤ p, then M ≤ P, consequently 

.l T zA A  If p < a, then .≤≥M P  By (v) and (vii), we observe  
x ∧ y* ≤ p ∧ q*. Recalling (iv), we have T(M) < T(P). Therefore, 

.l T zA A  
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Case 2c Let , , ( ) ( ).≤ ≤≥ <M N N P T N T P  Again, there are two sub-cases: 

Sub-case I (i) a ≤ x, (ii) y ≤ b, (iii) b* < y*, (iv) p < x, (v) q < y, (vi) y* < q*, 
(vii) x ∧ y* < p ∧ q*. 
By (v) and (ii), q < b. If a ≤ p, then M ≤ P, hence .l T zA A  If  
p < a, then ≤≥M P  and we reason as follows. By (i) and (iii),  
a ∧ b* ≤ x ∧ y*, which by (vii) implies T(M) = a ∧ b* < p ∧ q*  
= T(P). Therefore, .l T zA A  

Sub-case II (i) a ≤ x, (ii) y ≤ b, (iii) b* ≤ y*, (iv) x < p, (v) y ≤ q, (vi) q* < y*, 
(vii) x ∧ y* < p ∧ q*. 
By (i) and (iv), a < p. If q ≤ b, then M ≤ P, therefore .l T zA A  If 
b < q, we have ≤≥M P  and we observe that the assumption  
y* = x ∧ y* leads to y* = x ∧ y* < p ∧ q* ≤ q*, which contradicts 
(vi). Therefore, x = x ∧ y*, and the following holds by (i) and (vii), 
T(M) = a ∧ b* ≤ x = x ∧ y* < p ∧ q* = T(P). Therefore, .l T zA A  

Case 3a Let * * * *, , ( ) ( ), ( )≤ ≤≥ = ∧ = ∧ = = ∧ < ∧M N N P T N x y p q T P F P p q x y  
( ).= F N  This combination has two sub-cases: 

Sub-case I (i) a ≤ x, (ii) x* ≤ a*, (iii) y ≤ b, (iv) b* ≤ y*, (v) x < p, (vi) y < q, 
(vii) q* < y*, (viii) x ∧ y* = p ∧ q*, (ix) p* ∧ q < x* ∧ y. 
By (i) and (v), a < p. If q ≤ b, then M ≤ P and therefore .l T zA A  
If b < q, then .≤≥M P  Now, through (i) and (iv), a ∧ b* ≤ x ∧ y*. 
And by applying (viii), a ∧ b* ≤ p ∧ q*. Thus, if a ∧ b* < p ∧ q* 
[i.e., T(M) < T(P)], then .l T zA A  If a ∧ b* = p ∧ q*, that is T(M) 
= T(P), we invoke (ii) and (iii) getting x* ∧ y ≤ a* ∧ b. And by 
recalling (ix), we have F(P) = p* ∧ q < a* ∧ b = F(M). Therefore, 

.l T zA A  
Sub-case II (i) a ≤ x, (ii) x* ≤ a*, (iii) y ≤ b, (iv) b* ≤ y*, (v) p < x, (vi) q < y, 

(vii) y* < q*, (viii) x ∧ y* = p ∧ q*, (ix) p* ∧ q < x* ∧ y. 
From (iii) and (vi), q < b. If a ≤ p, then M ≤ P and .l T zA A  
However, if p < a, then .≤≥M P  Thus, we reason that by 
applying (i) and (iv), we get a ∧ b* ≤ x ∧ y*. By (viii), a ∧ b*  
= p ∧ q*, hence .l T zA A  However, if a ∧ b* = x ∧ y* holds 
implies by (viii), T(M) = a ∧ b* = p ∧ q* = T(P). Moreover, via (ii) 
and (iii), x* ∧ y ≤ a* ∧ b, and invoking (ix), F(P) = p* ∧ q < a* ∧ b 
= F(M). Hence, .l T zA A  

Case 3b If * * * *, ( ) ( ), ( ) ( )≤≥ = ∧ = ∧ = = ∧ < ∧ =M N T M a b x y T N F N x y a b F M  
and N ≤ P. Here too, there are two sub-cases: 
Sub-case I (i) a < x, (ii) b < y, (iii) y* < b*, (iv) a ∧ b* = x ∧ y*, (v) x* ∧ y < a* 

∧ b, (vi) x ≤ p, (vii) p* ≤ x*, (viii) q ≤ y, (ix) y* ≤ q*. 
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By (i) and (vi), a < p, and if q ≤ b then M ≤ P, hence .l T zA A  If 
b < q then ≤≥M P  and we reason that by applying (vi) and (ix), 
we obtain x ∧ y* ≤ p ∧ q*. And by (iv), a ∧ b* ≤ p ∧ q*. Now, if  
a ∧ b* < p ∧ q*, that is, T(M) < T(P), then .l T zA A  But, if a ∧ b* 
= p ∧ q* which means T(M) = T(P), then, we take it that by 
applying (vii) and (viii), we have p* ∧ q < x* ∧ y, and by invoking 
(v), we obtain p* ∧ q ≤ a* ∧ b, that is F(P) < F(M), thus, 

.l T zA A  

Sub case II (i) x < a, (ii) y < b, (iii) b* < y*, (iv) a ∧ b* = x ∧ y*, (v) x* ∧ y < a* 
∧ b, (vi) x ≤ p, (vii) p* ≤ x*, (viii) q ≤ y, (ix) y* ≤ q*. 
Considering (ii) and (viii), we have q < b. So, if it is the case that 
a ≤ p then M ≤ P and so .l T zA A  But, in case , .< ≤≥p a M P  
Thus, by (vi) and (ix), we have x ∧ y* ≤ p ∧ q*. And by (iv), a ∧ b* 
≤ p ∧ q*. If a ∧ b* < p ∧ q* [i.e., T(M) < T(P)], then .l T zA A  On 
the other hand, if a ∧ b* = p ∧ q* [i.e., T(M) = T(P)], then by (vii) 
and (viii), p* ∧ q ≤ x* ∧ y. And by (v), p* ∧ q < a* ∧ b. That is, 
F(P) < F(M) and therefore .l T zA A  

Case 3c If * * * *, ( ) ( ), ( ) ( ),≤≥ = ∧ = ∧ = = ∧ < ∧ =M N T M a b x y T N F N x y a b F M  
and * *, ( ) ( )≤≥ = ∧ = ∧ =N P T N x y p q T P  and * *( ) = ∧ < ∧F P p q x y  

( ).= F N  Now, since T(M) = T(N) and T(N) = T(P), T(M) = T(P). Also, F(P)  
< F(N) and F(N) < F(M), thus, F(P) < F(M). Let us assume P ≤ M. Then, T(P) 
≤ T(M) = T(N), a contradiction. So, .≤P M  Thus, either M ≤ P or .≤≥M P  
In both scenarios, .l T zA A  

Case 4 * * * *, ( ) ( ); , ( )≤≥ = ∧ < ∧ = ≤≥ = ∧ = ∧M N T M a b x y T N N P T N x y p q  
( ),= T P  and F(P) = p* ∧ q < x* ∧ y = F(N). 

Since T(M) < T(N) and T(N) = T(P), T(M) < T(P). Let us suppose that P ≤ M; 
this means T(P) ≤ T(M) < T(N), which is a contradiction to the fact that T(N)  
= T(P). Thus, ;≤P M  so either M ≤ P or .≤≥M P  In both cases, .l T zA A  

Case 5 * *, ( ) ( )≤≥ = ∧ = ∧ =M N T M a b x y T N  and * *( ) = ∧ < ∧F N x y a b  
* *( ); , ( ) ( ).= ≤≥ = ∧ < ∧ =F M N P T N x y p q T P  

Given that T(M) = T(N) and T(N) < T(P), we conclude that T(M) < T(P). 
Assume P ≤ M. Then, T(P) ≤ T(M) = T(N). Thus, T(P) ≤ T(N) contradicts the 
fact that T(N) < T(P); hence, .≤P M  Therefore, either M < P or .≤≥M P  
Again in both cases, .l T zA A  

Therefore, by 1–5, the relation T  is transitive, and the proof is complete. □ 
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Appendix B 

The proof of Theorem 2 

Proof: In fact, the proof of Theorem 2 is much similar to that of Theorem 1. For instance, 
the proof of transitivity of the relation F  for the case , ,≤ ≤≥M N N P  and F(P) = p*  
∧ q < x* ∧ y = F(N) is composed of two sub-cases as follows: 

Sub-case I (i) a ≤ x, (ii) x* ≤ a*, (iii) y ≤ b, (iv) x < p, (v) p* < x*, (vi) y < q, (vii) p* ∧ q 
< x* ∧ y. 

By (i) and (iv), a < p. If q ≤ b then M ≤ P, hence, .l F zA A  If b < q, then 
.≤≥M P  Therefore, we reason that by (ii) and (iii,) x* ∧ y ≤ a* ∧ b. And by 

(vii), we obtain F(P) = p* ∧ q < a* ∧ b = F(M). Thus, .l F zA A  

Sub-case II (i) a ≤ x, (ii) x* ≤ a*, (iii) y ≤ b, (iv) p < x, (v) x* < p*, (vi) q < y, (vii) p* ∧ q 
< x* ∧ y. 

From (iii) and (vi), q < b. If a ≤ p, then M ≤ P and .l F zA A  But, if p < a, 
we have .≤≥M P  By applying (ii) and (iii), x* ∧ y ≤ a* ∧ b is obtained. 
And by (vii), we get p* ∧ q < a* ∧ b. Therefore, .l F zA A  

Another example: The proof of transitivity of the case * *, ( )≤≥ = ∧ = ∧M N F M a b x y  
* *( ), ( ) ( )= = ∧ < ∧ =F N T M a b x y T N  and N ≤ P on .F  There are two sub-cases in 

this proof too: 

Sub-case I (i) a < x, (ii) b < y, (iii) y* < b*, (iv) a* ∧ b = x* ∧ y, (v) x ≤ p, (vi) p* ≤ x*, 
(vii) q ≤ y, (viii) y* ≤ q*, (ix) a ∧ b* < x ∧ y*. 

By (i) and (v), a < p. If q ≤ b, then M ≤ P and so .l F zA A  However, if  
b < q implies .≤≥M P  So, by (vi) and (vii), p* ∧ q ≤ x* ∧ y. And by (iv),  
p* ∧ q ≤ a* ∧ b is attained. Therefore, if p* ∧ q < a* ∧ b then, .l F zA A  
And if p* ∧ q = a* ∧ b, then we look at it that by (v) and (viii); x ∧ y*  
≤ p ∧ q*. By (ix), we have a ∧ b* < p ∧ q*. Thus, .l F zA A  

Sub-case II (i) x < a, (ii) y < b, (iii) b* < y*, (iv) a* ∧ b = x* ∧ y, (v) x ≤ p, (vi) p* ≤ x*, 
(vii) q ≤ y, (viii) y* ≤ q*, (ix) a ∧ b* < x ∧ y*. 

From (ii) and (vii), q < b. If a ≤ p, we have M ≤ P, and therefore .l F zA A  
If p < a, then .≤≥M P  Thus, p* ∧ q ≤ x* ∧ y by applying (vi) and (vii). By 
(iv), p* ∧ q ≤ a* ∧ b. In case p* ∧ q < a* ∧ b, that is F(P) < F(M) we 
conclude that .l F zA A  If however F(P) = p* ∧ q = a* ∧ b = F(M) then by 
(v) and (viii), x ∧ y* ≤ p ∧ q*. And by (ix), T(M) = a ∧ b* < p ∧ q* = T(P). 
Thus, .l F zA A  

Hence, the relation F  is transitive, and the proof is complete. □ 


