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Abstract: Semantic image segmentation makes a pixel-level classification play an essential
role in scene understanding. Recently, most approaches exploit deep learning neural networks,
especially convolutional neural networks (CNNs), to tackle the image segmentation challenge.
Common issues of these CNN-based methods are the loss of spatial features during learning
representations and the limited capacity for capturing contextual information in a large receptive
field. This paper proposes a diffusion convolutional network (DCNet) to combine the CNN and
graph convolutional neural network (GCNN) for semantic image segmentation. In the proposed
model, diffusion convolution is formulated as a graph convolutional layer to aggregate structural
and contextual information without losing spatial features. The final segmentation results on the
PASCAL VOC 2012 and Cityscapes datasets show better performance than baseline approaches
and can be competitive with state-of-the-art methods.
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1 Introduction

Semantic image segmentation is a fundamental task in
many visual understanding works (Liang et al., 2020;
Jiang et al., 2020). It tries to divide images into multiple
semantic objects, which can be applied in a broad
range of applications such as healthcare (Huang et al.,
2009), autonomous driving (Grigorescu et al., 2020), and
video surveillance (Ammar et al., 2020). Semantic image
segmentation is also a classification task of pixels with
semantic labels that performs a pixel-level classification for
all pixels with a set of predefined labels such as human, car,
bus, bird, and dog, etc. This dense classification involves
the local features and contextual information to assign
correct labels to pixels in the receptive field and the spatial
information to determine the clear boundaries.

Over the last few years, AI (Liang et al., 2019),
IoT (Liang et al., 2011; Li et al., 2018b, 2020b), big
data (Liang et al., 2016a; Li et al., 2020a) technology,
and deep learning have been widely used in various
fields of computer vision. Deep learning models, especially
convolutional neural networks (CNNs), have yielded a new
generation of semantic image segmentation. Besides, CNN
has demonstrated its powerful ability to learning feature
representations for making the classification. However,
CNN has its intrinsic problems when applied in semantic
image segmentation.

Although CNNs are good at extracting features of
objects for image classification, CNNs lose spatial features
such as dimensions, locations, structures, and boundaries
that are important for semantic segmentation, which leads
to misclassification and blurred boundaries. The reason
for this problem is that CNNs apply multiple pooling
operators to introduce invariance, expand the receptive
field, and reduce the number of parameters. This operator
is good for classification that is required to be invariant
to various transformations. But for the localisation,
semantic segmentation approaches should be sensitive to
transformations to precisely locate pixels for all categories.
There are many studies trying to solve this issue. Fully
convolutional networks (FCNs) (Long et al., 2015) employ
the deconvolution layer to increase the resolution of feature
maps and make a dense prediction. SegNet (Badrinarayanan
et al., 2017) reuses pooling positions that are recorded
in max-pooling layers to upsample feature maps. Some
studies tend to construct an effective architecture for
extracting features and obtaining spatial information such
as DenseAspp (Yang et al., 2018), DeconvNet (Noh et al.,
2015) and U-Net (Ronneberger et al., 2015). But these
methods always focus on utilising hierarchical feature maps
efficiently and cannot extract the long-range contextual
features flexibly.

Another problem of CNNs for semantic image
segmentation is that the traditional CNNs cannot efficiently
learn multi-scale feature maps for different objects of
various sizes. Due to the fixed size of the receptive
field of CNNs, which is determined by its grid-like
local connections in the kernel and pooling operators,
irregular dependencies among pixels and global contextual

information is lost. This limitation may cause that CNNs
learn an imprecise structural representation and focus on
local features, which results in misclassification when few
pixels change.

To obtain global contextual information, DeepLabv1
(Chen et al., 2014) uses a fully connected conditional
random field (CRF) to learn the overall relationships
between pixels, which refine the segmentation result
by spatial dependencies. Zheng et al. (2015) integrated
CRFs with the deep CNNs to automatically learn spatial
relationships among all pixels in the input image. There
are other approaches that apply the attention mechanism
to model global dependencies. Hu et al. (2020) proposed
fast spatial attention to obtain spatial context. Attention
complementary network (ACNet) (Hu et al., 2019) uses
multiple attention complementary modules to extract
features from RGB and depth branches.

In this paper, the diffusion convolutional network
(DCNet) is proposed, which combines CNNs and graph
convolutional neural networks (GCNNs). The DCNet
employs an encoder-decoder structure. In the encoder,
hierarchical feature maps are extracted by inputting a 2D
image through stacked convolutional layers and multiple
pooling layers. These feature maps are then fed into the
decoder to restore to the original resolution of the input
image and output segmentation results. To represent the
input image in a new coordinate space, a GCNN is then
inserted into the network, which builds the graph from
the input image. Nodes in the graph indicate pixels in the
image, while edges in the graph show relationships between
pixels. Through this graph, DCNet embeds structure
information into the learning of feature representation.

The diffusion convolution is applied in the graph neural
network to extract features. The selected low-level feature
maps from the encoder and semantic feature maps from
the decoder are input into a GCNN. The features of every
node are updated by gathering information from nodes in
its neighbourhood, which maintains the spatial information
and capture structure information. With the information
exchanges along edges, contextual features can be extracted
in a large receptive field, which is expanded as this process
runs. Therefore, DCNet obtains a flexible receptive field by
combining CNNs with graph neural networks.

Moreover, the final feature maps containing rich
structure and contextual information are used to make the
segmentation results. The experiments show outstanding
performance on the PASCAL VOC 2012 (Everingham
et al., 2015) and Cityscapes (Cordts et al., 2016) datasets.
The contribution of this work is summarised as follows:

• A novel model, DCNet, is proposed for semantic
image segmentation, which combines CNNs and
GCNNs to capture local and global contextual
features.

• The proposed DCNet introduces diffusion convolution
as graph convolution in semantic image segmentation,
which aggregates global contextual information and
enlarges the size of the receptive field without
missing spatial features.
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Figure 1 The architecture of the proposed model (see online version for colours)
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Figure 2 2D convolution and graph convolution, (a) 2D convolution (b) graph convolution (see online version for colours)

(a) (b)

• Experiments are conducted on the PASCAL VOC
2012 and Cityscapes datasets. The results have

demonstrated the proposed model yields outstanding
segmentation performance.
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This paper is organised as follows. Section 1 introduces
the semantic image segmentation, the problems of CNNs,
and the contributions of the paper. Section 2 presents the
related works about semantic image segmentation and graph
neural networks. Section 3 demonstrates the architecture
and methods used in DCNet. Section 4 shows the details
about experiments. Section 5 provides a conclusion of the
paper.

2 Related work

2.1 Semantic segmentation based on deep learning

With the success of deep learning networks, FCNs (Long
et al., 2015) have become the breakthrough work of
applying CNNs in semantic image segmentation. Since
then, many deep learning models have been applied to
semantic segmentation. However, to recognise and classify
deformed objects, deep CNNs stack multiple convolutional
and pooling layers to expand the receptive field and reduce
the resolution of feature maps, which results in losing
spatial and contextual information.

To obtain a large receptive field and capture multi-scale
contextual information, the DeepLab families (Chen et al.,
2014, 2017, 2018) have employed atrous convolution (also
called dilated convolution) and Atrous Spatial Pyramid
Pooling (ASPP) to increase the size of the receptive field
and capture contextual features without losing spatial
information. ASPP employs multiple dilated convolutions
with different dilation rates to extract multi-scale features
in various sizes of the receptive field. To get a global
view of feature maps, a fully connected CRF is applied in
DeepLabv1 (Chen et al., 2014) to model the long-range
spatial dependencies between pixels in the input image. To
reuse low-level features, DeepLabv3 (Chen et al., 2017)
introduces image-level features by using global average
pooling on the feature maps, while DeepLabv3+ (Chen
et al., 2018) adopts an encoder-decoder structure. Without
using dilated convolution, PSPNet (Zhao et al., 2017)
uses multiple parallel pooling layers that have different
filter sizes to aggregate multi-scale contextual features.
These contextual features are then upsampled to the
size of the input image and cascaded to make the final
pixel-level classification. Peng et al. (2017) proposed a
global convolutional network that has large kernel sizes
to solve the problem of classification and localisation
for the semantic image segmentation. The method also
applies a residual-based boundary refinement to get a sharp
object boundary. Contextual aggregating network (CAN)
(Cong et al., 2019) gathers all middle-level features by
applying a convolutional layer with various kernel sizes to
extract contextual information for final image segmentation.
APCNet (He et al., 2019) proposes an adaptive context
module (ACM) to extract context features by learning the
local affinity coefficients for sub-region of various sizes.
CDN (Fu et al., 2020) designs a channel contextual module

for obtaining image-level semantic information and a spatial
contextual module to capture patch-level semantic context.

The local connections of the convolution operator
can represent the relationships of pixels in the receptive
field and disregard wider spatial dependencies. To capture
long-range spatial dependencies among pixels, some
methods utilise CRFs. For example, Zheng et al. (2015) run
a fully connected CRF as a recurrent neural network, and
all parameters are trained in an end-to-end way. Colovic
et al. (2017) combined CNNs with a local connected CRF
to encourage consistency within the segmentation results
and clarify the boundaries. Some works use a recurrent
neural network to extract spatial dependencies. Visin et al.
(2016) employed CNNs to extract local generic features and
stacked multiple ReNet layers to learn spatial dependencies
all over the feature map by sweeping the feature map
horizontally and vertically. Byeon et al. (2015) designed a
2D LSTM network to extract local and global contextual
information and learned spatial dependencies of labels.
Other approaches exploit attention mechanism to embed
global contextual information into local features. Li et al.
(2018a) proposed a feature pyramid attention module to
combine global information with high-level spatial features
and a global attention upsample module to reuse low-level
features by the guidance from high-level features. Chen
et al. (2016) input multiple images with different sizes into
a shared CNN and used attention mechanism to weight
these multi-scale features.

In recent years, graph neural networks have shown
their ability to exploit structural information and have
been applied in drug discovery, disease prediction, and
citation networks. For semantic image segmentation, graph
LSTM (Liang et al., 2016b) constructs the graph over a
set of arbitrary-shaped superpixels and connects the spatial
neighbours with undirected edges. Then it uses the proposed
confidence-driven scheme to update the hidden and memory
states of the nodes. Zhang et al. (2019) proposed a dual
graph convolutional network to model the global context
of the input feature by using two orthogonal graphs. Liu
et al. (2020) presented a self-constructing graph module to
automatically learn a long-range dependency graph from
the image and extracted contextual features to improve the
segmentation performance. Lu et al. (2019) extended the
grid feature maps to graph structure data and reformulated
the image segmentation task as the node classification task
by applying a graph convolutional network. Qi et al. (2017)
proposed a 3D graph neural network to exchange and
update feature representations of each node by a graph
recurrent neural network. Wolterink et al. (2019) aggregated
local image features of each node and features of its
neighbours to determine the spatial location of vertices
for segmenting the coronary artery lumen. Soberanis et al.
(2020) used graph convolutional network and uncertainty
analysis to refine segmentation results by transferring
the segmentation refinement to a semi-supervised node
classification task that is solved by graph convolutional
network.
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Figure 3 Examples that semantic segmentation results on PASCAL VOC 2012 (see online version for colours)
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Figure 4 Examples of semantic segmentation results on the Cityscapes dataset (see online version for colours)

Ιµαγε Γρουδ Τρυτη Ρεσυλτ Ιµαγε Γρουδ Τρυτη Ρεσυλτ

Different from these methods above, we propose a novel
network, DCNet, which combines CNNs and GCNNs to
capture local and structure information by introducing the
diffusion convolution into semantic image segmentation.
By mapping a 2D image to a 5D coordinate space, a
directed graph is constructed by connecting K nearest

neighbours of each node. Then the feature maps selected
from CNNs are input into a graph convolutional network
to aggregate contextual information in a broader receptive
field and structural information. These features can
produce better representations for the following pixel-level
classification.
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3 Diffusion convolutional network

In this section, the overall network is introduced. The
work process of the proposed graph neural network is also
demonstrated, including the construction of the graph and
the diffusion convolution layer.

3.1 Architecture

As shown in Figure 1, an encoder-decoder structure is
applied in the proposed model. The encoder contains five
convolution blocks, which have three convolutional layers
in each block with a 3 × 3 filter size. Multi-level feature
maps are extracted in the encoder, and the dimensions
of the feature maps are decreased gradually by using
max-pooling operators. The last two max-pooling layers are
set to keep the sizes of the feature maps and capture more
contextual information. During this process, the receptive
field of the network is also expanded. Correspondingly, the
decoder has four convolution blocks, which also have three
convolutional layers with 3 × 3, 1 × 1, and 3 × 3 filter
sizes. Unpooling operators are utilised in the decoder for
upsampling to reconstruct the spatial features and increase
the dimensions, which use pooling indexes computed in the
max-pooling step of the corresponding layers in the encoder
to apply nonlinear upsampling. A softmax layer is stacked
at the end of the decoder to produce a probability result. In
the decoder, a graph neural network is employed to capture
structural and contextual features. And the final label for
each pixel is the label with the maximum probability. Every
convolutional layer in the network is equipped with a ReLU
activation layer and batch normalisation layer.

The input image passes through convolutional blocks
of the encoder to produce hierarchical feature maps,
including low-level features that contain contextual and
detailed information and high-level features that have global
and coarse information. However, spatial and contextual
features are lost, which is important for segmentation.
Then the extracted feature maps are input into the decoder
to recover the original resolution and generate a dense
prediction. During this process, unpooling layers put values
in the feature maps to the maximum location recorded
by the corresponding max-pooling layers, which precisely
reconstruct some spatial features and output sparse feature
maps. These sparse feature maps are input into the
following convolution block to make dense feature maps.
To exploit the structural and spatial dependencies in the
feature maps, a graph neural network is inserted in the
decoder, which aggregates information for each node by
using the graph constructed from the original input image
and the feature maps extracted from the encoder. The final
feature maps of the decoder are input into the softmax layer
to generate probability maps that contain probabilities for
every label of each pixel.

3.2 Spatial-based graph convolution

As is used by most CNNs, the 2D convolution takes an
ordered grid-like image as input. Each pixel in the input
is treated as a node that is connected to its neighbours
in the fixed receptive field determined by the convolution
filter. To compute a new value, the 2D convolution
obtains a weighted average of features of the node and its
neighbours. However, the graph convolution takes hidden
representations of unordered nodes as input. A graph is
built by utilising relationships between nodes. To update the
hidden representation of each node, the graph convolution
aggregates information of the node and its neighbours in
various shapes of the receptive field.

The spatial-based graph shares some properties with the
standard convolution operator that performs convolution on
a node and its neighbours defined by spatial relationships.
An input image can be regarded as a graph with isolated
nodes representing all pixels. As shown in Figure 2(a), the
red node is connected to its surrounding nodes in a 3 ×
3 kernel. In the receptive field, the neighbours of the red
node are eight pixels around it. The locations of these eight
nodes imply an ordering of neighbours of the red node. To
perform the convolution, a 3 × 3 filter is applied on the
graph to compute the weighted average of the red node and
its neighbours over each channel. Therefore, the trainable
wights can be shared by each node in the same channel for
the fixed shape and order of its neighbours.

Correspondingly, the spatial-based graph convolution
updates each node’s hidden representation by aggregating
the representation of the red node and its neighbours,
as illustrated in Figure 1(b). Different from the standard
convolution, the neighbours of each node in spatial-based
graph convolution are unordered and variable in size.

3.3 Graph construction

The graph is constructed on pixels that are obtained through
a downsampled image by using a pooling operator. Note
that the input feature maps have been downsampled. So, in
order to use the original image for graph construction in the
proposed graph neural network, the input image need to be
downsampled into the size of the feature map.

The graph G for the input image is constructed by
connecting the neighbour nodes ne[v] of each node v via
the edges E . The graph node vi denotes a pixel and the
graph edge Eij expresses the connection between node
vi and vj . The features of node vi are represented by
fi ∈ Rd with d dimensions. In this paper, the graph is
constructed by using K nearest neighbours algorithm to
select the top K nearest node as the neighbours of each
node. To calculate the distance between two nodes, a
feature vector with five dimensions is designed for each
node. This feature vector contains (r, g, b) values of each
node that represents the appearance of the node and (x, y)
coordinates of the node in the input image. So, the feature
fi can be expressed as (r, g, b, x, y). By using the K nearest
neighbours algorithm, the directed graph G is constructed
and an weighted adjacency matrix W is generated.
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Figure 5 Comparison results on the PASCAL VOC 2012 dataset (see online version for colours)
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Table 1 Detailed configuration of the proposed encoder network

Blocks Layers Output size Kernel Stride Pad

Block 1 Conv2D 64 × 224 × 224 3 × 3 1 1
Conv2D 64 × 224 × 224 3 × 3 1 1

Max-pooling 64 × 112 × 112 2 × 2 2 0
Block 2 Conv2D 128 × 112 × 112 3 × 3 1 1

Conv2D 128 × 112 × 112 3 × 3 1 1
Max-pooling 128 × 56 × 56 2 × 2 2 0

Block 3 Conv2D 256 × 56 × 56 3 × 3 1 1
Conv2D 256 × 56 × 56 3 × 3 1 1
Conv2D 256 × 56 × 56 3 × 3 1 1

Max-pooling 256 × 28 × 28 2 × 2 2 0
Block 4 Conv2D 512 × 28 × 28 3 × 3 1 1

Conv2D 512 × 28 × 28 3 × 3 1 1
Conv2D 512 × 28 × 28 3 × 3 1 1

Max-pooling 512 × 28 × 28 3 × 3 1 1
Block 5 Conv2D 512 × 28 × 28 3 × 3 1 1

Conv2D 512 × 28 × 28 3 × 3 1 1
Conv2D 512 × 28 × 28 3 × 3 1 1

Max-pooling 512 × 28 × 28 3 × 3 1 1

3.4 Diffusion convolution layer

The diffusion convolution is selected as graph convolution
to capture the spatial dependencies among the features. The
directed graph is expressed as G = (V, E ,W ), where V is

the set of nodes, E is the set of edges and W ∈ RN×N is
the adjacency matrix. Let X ∈ RN×P be the initial features
of the nodes in the graph, where P is the dimension of each
feature vector.

The diffusion process models the spatial dependencies
as a random walk on the constructed graph G with a restart
probability α ∈ [0, 1] and a transition matrix D−1

O W . DO =
diag(W1) is the out-degree diagonal matrix, and 1 is a
all one vector. When the diffusion process runs enough
time steps, this Markov process converges to a stationary
distribution P ∈ RN×N , as illustrated as follows:

P =
∞∑

m=0

α(1− α)
m
(D−1

O W )
m (1)

where m denotes the time steps. In the experiment, a finite
M time step is used to simulate the diffusion process. In
this paper, the diffusion process is defined as:

X:,pf(θ)

=
M−1∑
m=0

(θk,1(D
−1
O W )

m
+ θk,2(D

−1
I WT )

m
)X:,p (2)

where p ∈ {1, ..., P} are the dimensions of the feature,
θ ∈ RM×2 are the trainable weights, D−1

I is the in-degree
matrix, and D−1

O W , D−1
I WT denote the transition matrix

and the reverse transition matrix, respectively. Therefore,
the diffusion convolution layer utilised in this paper can be
expressed as:
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Z:,q = σ

(
P∑

p=1

X:,pf(Θq,p,:,:)

)
(3)

where Z ∈ RN×Q are the output features, Θ ∈
RQ×P×M×2 are the parameter vectors and Q is the number
of dimensions of the output. The function σ can be an
activation function.

In this paper, the graph G is constructed from the
downsampled image. Then, X is initialised by the reshaped
feature maps that are extracted in the encoder. After
K time steps, the diffusion convolution layer output the
feature maps Z. Finally, these feature maps are fed into a
convolutional layer with 3 × 3 filter size.

4 Experiment

In this section, the implementation details of the proposed
model are presented, as well as its training process. Then,
the results of experiments conducted on the PASCAL VOC
2012 and Cityscapes dataset are provided. Finally, the
analysis of experimental results is demonstrated.

4.1 Implementation

The network includes the encoder, decoder, and diffusion
convolution layer, as is shown in Figure 1, which is
implemented by the Pytorch framework. In practice, the
encoder is utilised a VGG16 (Simonyan and Zisserman,
2014) network which is pretrained on the ImageNet dataset
for image classification, and the last max-pooling layer in
the VGG16 are modified to keep the size of feature maps
unchanged. The detailed configurations of the encoder are
demonstrated in Table 1. The proposed decoder is initialised
by zero-mean Gaussian, and its detailed configurations are
shown in Table 2. The decoder has four blocks that each
block contains three convolutional layers with filter sizes
are 3 × 3, 1 × 1, and 3 × 3. There are three unpooling
layers in the decoder to recover the resolution of feature
maps. The feature maps from the encoder and decoder are
finally inputted into a convolution layer with a 1 × 1
filter size for feature fusion. Then, the final fused features
are input into a diffusion convolutional layer to embed
structural and contextual information. The K value in the
diffusion operator is set to 3. A softmax layer is stacked at
last to make the final pixel-wise classification. The ReLU
activation and batch normalisation layer are applied after
each convolutional layer. The proposed model is evaluated
on two semantic image segmentation datasets.

PASCAL VOC 2012 is a widely used dataset in computer
vision, which can be a benchmark dataset for image
classification, image segmentation, object detection, action
recognition, and person layout. For the semantic image
segmentation task, the dataset contains 21 classes of object
labels such as airplane, train, car, bus, horse, person, etc.
This dataset has 1,464 images for training and 1,449 images
for validation. Ten percent of the image dataset images are

used for testing. The dataset is also augmented for training
by flipping the image horizontally and vertically.

Cityscapes is an image dataset for semantic
segmentation of urban street scenes. For the semantic
image segmentation, the dataset has 19 semantic categories
such as human, sky, vehicle, wall, sidewalk, bicycle, traffic
light, etc. The images are divided into 2975 for training,
500 for validation, and 1526 for testing. In practice, the
dataset is augmented for training by flipping the image
horizontally and vertically.

Table 2 Detailed configuration of the proposed decoder network

Blocks Layers Output size Kernel Stride Pad
Block 1 Conv2D 1,024 × 28 × 28 3 × 3 1 1

Conv2D 512 × 28 × 28 1 × 1 1 0
Conv2D 256 × 28 × 28 3 × 3 1 1
Unpooling 256 × 56 × 56 2 × 2 2 0

Block 2 Conv2D 512 × 56 × 56 3 × 3 1 1
Conv2D 256 × 56 × 56 1 × 1 1 0
Conv2D 128 × 56 × 56 3 × 3 1 1
Unpooling 128 × 112 × 112 2 × 2 2 0

Block 3 Conv2D 256 × 112 × 112 3 × 3 1 1
Conv2D 128 × 112 × 112 1 × 1 1 0
Conv2D 64 × 112 × 112 3 × 3 1 1
Unpooling 64 × 224 × 224 2 × 2 2 0

Block 4 Conv2D 128 × 224 × 224 3 × 3 1 1
Conv2D 64 × 224 × 224 1 × 1 1 0
Conv2D 21 × 224 × 224 3 × 3 1 1

Notes: ‘Conv2D’ denotes the convolutional layer.
ReLU layers and batch normalisation layers
are omitted from the table for brevity.

For training, we pre-process the images which are resized to
250 × 250 and flipped horizontally and vertically. During
training, the input image in randomly cropped to 224 ×
224. The loss function is defined as:

Loss =
1

N

∑
i

Li =
1

N

∑
i

− log

(
epi∑
j e

pj

)
(4)

where p is the output probability generated by the network.
The parameters of the encoder, decoder and diffusion
convolution layer are optimised in a end-to-end fashion by
using Adam optimiser. Let θt be parameters in the network
at time step t. The loss function can be denoted as L(θt).

gt = ∇θLt(θt−1) (5)
mt = β1 ·mt−1 + (1− β1) · gt (6)
vt = β2 · vt−1 + (1− β2) · g2t (7)
m̂t = mt/(1− βt

1) (8)
v̂t = vt/(1− βt

2) (9)
θt = θt−1 − α · m̂t/(

√
v̂t + ε) (10)

α is set to an fixed step size of 10−−13 and momentums β1,
β2 set to 0.99 and 0.999 respectively. βt

1 denotes β1 power
to t. βt

2 denotes β2 power to t. ε is set to 0.0005. m0 and
v0 are initialised to 0. The max epoch is set to 200. The
proposed model is trained and tested on a single NVIDIA
Titan X GPU with 12 G memory.
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Figure 6 Comparison results on the Cityscapes dataset (see online version for colours)
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Figure 7 Visualisation of activation map in the diffusion convolution layer (see online version for colours)
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The performance of the proposed model is measured in
terms of mean of class-wise intersection over union (mIoU),
which is defined as follows:

mIoU =
1

ncl

∑
i

nii

ti +
∑
j

nji − nii
(11)

where nij is the number of pixels of class i predicted to
belong to class j, ncl is the number of classes, and ti =∑

j nij is the total number of pixels of class i.
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4.2 Results on the PASCAL VOC 2012 dataset

The proposed DCNet is compared with five baseline
models, FCN-8s, U-Net, DeconvNet, DeepLabv1,
DeepLabv3, to verify the segmentation performance of
DCNet. FCN, U-Net, and DeconvNet are baseline methods.
DeepLabv1 and DeepLabv3 are two state-of-the-art
methods in semantic image segmentation. VGG16 is
used as the backbone network of FCN-8s, DeepLabv1,
DeepLabv3, and the encoder network of DeconvNet and
U-Net. These five approaches are also trained on our
preprocessed image datasets.

Table 3 Segmentation results on PASCAL VOC 2012

Method mIoU

FCN-8s 61.9%
U-Net 65.2%
DeconvNet 71.2%
DeepLabv1 70.3%
DeepLabv3 75.6%

DCNet 72.6%

As shown in Table 3, the proposed DCNet obtain
72.6% of mIoU outperforms FCN-8s’ 61.9%, U-Net’s
65.2%, DeconvNet’s 71.2%, and DeepLabv1’s 70.3%. The
backbone networks of U-Net, DeconvNet, and DCNet have
similar structures. The differences between U-Net and
DCNet are the unpooling layers and diffusion convolution
that are applied in DCNet. The only difference between
DCNet and DeconvNet is that the diffusion convolutional
layer is introduced in the DCNet. Therefore, the ability
of the diffusion convolution in improving semantic image
segmentation performance is validated by comparing it with
U-Net and DeconvNet.

For qualitative analysis, some segmentation examples of
DCNet, FCN-8s, and DeepLabv3 are shown in Figure 5.
These comparison results reflect the category recognition
and localisation capability of the models. As is seen
from the example in Figure 5, the DCNet achieves a
better segmentation performance than FCN-8s and can
be competitive to DeepLabv3. In the first row, FCN-8s
roughly locates and outlines the semantic area of horse
and human in the image. But most of the horse area is
classified as human, and the shape of the horse is totally
distorted. Moreover, the legs of the horse are missing.
The segmentation results of DeepLabv3 and DCNet are
more accurate. The shape and structure of horses and
people are complete. The boundaries of objects are clear.
However, the legs of the horse are also not segmented as
a different part of the whole structure. In the second row,
FCN-8s has segmented the big plane with a complete shape.
But it totally ignores the small plane in the lower right
corner of the image. In addition, a part of the aircraft’s
tail is misclassified by FCN-8s. DeepLabv3 and DCNet
have segmented two planes in the image with complete
shape and smooth boundaries. In the third row, FCN-8s
still disregards the small semantic area of the human and
incorrectly classifies some background areas. The areas

of the two people are connected together. But DCNet
and DeepLabv3 has segmented all three semantic areas of
human and separated the two people in the centre of the
image to some extent.

These segmentation examples demonstrate that the
DCNet can correct the classification errors due to local
feature and spatial dependencies. In addition, the results
in Figure 5 illustrate that the DCNet can effectively
deal with small objects in the image due to obtaining a
large receptive field by using the diffusion convolution.
Besides, the complete shapes and accurate classification in
the segmentation results of DCNet also verify its ability
to extract and exploit multi-scale context information to
make inferences, which maintains the consistency in the
segmentation results.

4.3 Results on the Cityscapes dataset

The proposed model is also evaluated on the Cityscapes
dataset as well as the baseline methods. As shown in
Table 4, DCNet obtains 73.2% of mIoU outperforms
FCN-8s’ 59.6%, U-Net’s 62.8%, DeconvNet’s 69.1%, and
DeepLabv1’s 68.9%. These results also prove that DCNet’s
diffusion convolutional layer can improve segmentation
performance by learning structure and contextual features.

Table 4 Segmentation results on Cityscapes

Method mIoU

FCN-8s 59.6%
U-Net 62.8%
DeconvNet 69.1%
DeepLabv1 68.9%
DeepLabv3 74.4%

DCNet 72.2%

Some segmentation examples produced by DCNet, FCN-8s,
and DeepLabv3 on the Cityscapes dataset are shown in
Figure 6. In the first row of Figure 6, the FCN-8s can
not segment the areas of lawn and human in the image
with a complete shape. However, the DCNet recognises
the human and the lawn with smooth boundaries. In the
second row, the semantic areas of human and bicycle are
twisted. Some parts of the bicycle are classified as human,
road, or lawn. The DCNet has segmented the bicycle and
human with complete structure. Especially, the leg of the
human is recognised. In the third row, some isolated areas
are incorrectly classified by the FCN-8s. But the DCNet can
segment the objects in the image with consistent labels.

These results in Figure 6 also demonstrate that the
DCNet can precisely locate and recognise semantic objects
in the image, including small ones. Moreover, the DCNet
can keep the consistency in the segmentation result for its
graph-based structure learning.

4.4 Discussion

To further analyse the performance of the DCNet, more
segmentation results produced by the DCNet on the
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PASCAL VOC 2012 and Cityscapes datasets are shown
in Figures 3 and 4. The DCNet can make an accurate
localisation and classification such as the human, bird,
and dog in Figure 3. In addition, the proposed model can
effectively deal with small objects such as humans, traffic
lights, and cars in Figure 4.

To show what the diffusion convolutional layer is
learned, some activation maps of the diffusion operator
are visualised in Figure 7. As is seen in Figure 7,
the graph-based module has located and outlined some
semantic areas in each input image, such as the furniture,
dogs, human, and plane. Moreover, the model obtains a
broad receptive field as the bright area covers all semantic
areas.

Therefore, the proposed model has shown its ability to
reconstruct spatial details such as locations, boundaries, and
structures and keep consistency among labels. However,
there are some misclassification and deformation for small
objects or small parts of the objects. The reasons for this
phenomenon may be that there are not enough pixels for
the model to capture the characteristics of the small objects,
and the learned representations are still not good enough
for reconstructing spatial information completely. To solve
this problem, the model can be trained with high-resolution
images.

In practice, the graph convolution neural network
effectively utilises the dependencies among features for
capturing structural information and contextual information.
However, the computation of the diffusion process
consumes a lot of computing resources, especially memory.
This limitation may result in paying more attention to local
dependencies and features. To remedy this issue, the model
can be trained in a distributed system with more GPUs and
memory.

5 Conclusions

In this paper, a novel model, DCNet, combines CNNs and
GNNs for the fundamental semantic image segmentation,
which combines the powerful abilities of CNNs for
representation learning and GNNs for structure learning.
The graph for each image is constructed by connecting K
nearest neighbours in a higher feature space. The diffusion
process is applied to aggregate information from neighbour
nodes for capturing structural and contextual features
in the receptive field with various sizes. Experiments
conducted on PASCAL VOC 2012 and Cityscapes datasets
have validated that the diffusion convolutional layer can
significantly improve the segmentation performance by
equipping the deep convolutional networks with structure
learning.
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