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Process technology is also getting better and better.
Nevertheless, power consumption and performance are still
the top concerns (Beck et al., 2013) when devising new
reconfigurable embedded systems.

As discussed by Borkar and Chien (2011) and Chien
(2018), it will be more difficult to continue with Moore’s
law scaling in the next years without exploring new
heterogeneous architectures with application-customised
hardware. Operation frequency tends to increase slowly,
and energy tends to be the main performance limiter.
To face such challenges, the intensive employment of
customised accelerators, or runtime reconfigurable designs,
will be required to deliver power- and performance-efficient
systems. Perera and Li (2019) claim that FPGA-based
hardware is one of the best options to face these challenges.

1 Introduction

Notable advances were achieved related to the 
field-programmable gate array (FPGA) area in the past 
two decades. It goes from rapid prototyping (Bobda, 2007; 
Chattopadhyay, 2013) to the support of runtime partial 
reconfiguration (PR) designs. The latter enables the chip’s 
reconfigurable area to be divided into two or more different 
partitions, and each partition is allowed to be reconfigured 
independently of each other.

Basically, FPGA fits between general purpose 
processors (GPP) and application-specific integrated circuits 
(ASIC) in terms of flexibility and performance. FPGA is 
more flexible than GPP, and presents less performance 
when compared to ASIC.

Copyright © 2021 Inderscience Enterprises Ltd.
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Most of the literature addresses power consumption
and performance analysis with respect to the execution
of an embedded system, i.e., when the system is already
executing a given function in software or even in hardware.
On the other hand, a runtime reconfigurable design presents
another key point to be observed: the PR phase.

The total number of PRs a system may achieve during
its execution tends to increase whenever that system really
wants to take advantage of this feature to overcome
the previously mentioned challenges. In view of this, a
tool is required able to estimate power consumption and
performance levels when a hardware partition is under the
reconfiguration process.

Motivated by this context, this paper addresses power
and performance analysis of the PR process supported
by runtime reconfigurable hardware. We introduce a
heterogeneous system-on-chip (SoC) FPGA-based runtime
partial reconfigurable (FRunPR) platform design along with
an experimental and a theoretical power consumption and
performance models, which are specific to the PR process.

To assess our models, we implemented the FRunPR
platform design in an experimental setup, with one
partition, and measured the power consumption and
performance when that partition was being reconfigured.
Next, the data was compared to the proposed analytical
models’ estimates.

The main contributions of this paper are summarised as
follows:

• Analytical power consumption and performance
models applicable to the runtime PR phase,
independent from the number of partitions in the
reconfigurable area.

• Experimental implementation of a heterogeneous SoC
FPGA-based runtime partial reconfigurable platform
design, showing a trade-off analysis of power
consumption and performance.

The proposed estimation models are applicable for
runtime partial reconfigurable systems where power and
performance constraints may change during execution time,
i.e., where trade-offs are acceptable or even required.

2 Background

2.1 Reconfigurable computing

In reconfigurable computing, a programmable processor
may differ from a reconfigurable one. The former is
basically governed by high-level languages, such as C or
C++, and its hardware architecture is fixed. The latter
can have its low-level switches architecture completely
changed allowing different functionality to take place,
where a hardware description language (HDL) is generally
employed (Chattopadhyay, 2013).

According to Koch (2013), a notable research area,
namely reconfigurable computing, was established taking
into account the reconfigurable device’s introduction. The

reconfigurable computing concept dates back to 1960 when
Estrin proposed a seminal variable structure computer along
with fixed parts (Estrin, 1960).

Generally, a reconfigurable processor always supports
full reconfiguration (FR). In this case, the entire
reconfigurable area is changed at once. Conversely, modern
devices also support PR. It allows for defining multiple
different areas known as partitions, besides a static area.
Thus, partitions can be independently hardware-changed by
PR at runtime, i.e., when the reconfigurable processor is
executing and without stopping other partitions or the static
area.

Runtime reconfiguration is not regarded as a
simple process, especially taking into account partitions
input/output interfaces (Bobda, 2007).

For both FR and PR, a given function may be written
using HDL. Then, after synthesis and fitting processes a
configuration bitstream is generated. This bitstream must
be loaded into the device’s configuration memory (CRAM).
This memory is the one controlling the logic elements,
memory, and routing multiplexers in the reconfigurable
processor. CRAM bits can be structured in columns,
and in that case, an entire column is overwritten when
reconfiguration occurs.

There are a number of modes when generating a
configuration bitstream, including ‘and/or’ mode (AO/M)
and ‘scrub’ mode (SC/M). Basically, the mode dictates the
way the configuration bitstream is effectively written in the
CRAM.

In the AO/M, memory is written in a two-pass fashion.
Column regions inside the partition are bitwise ANDed with
zero’s, and outside the partition they are ANDed with one’s.
Next, column regions inside the partition are bitwise ORed
with new bitstream data, and outside the partition they are
ORed with zero’s. Column regions outside the partition
under PR remain unchanged.

On the other hand, SC/M is based on an one-pass
fashion. The entire column is always changed. Column
regions inside the partition are overwritten with new
bitstream data, and column regions outside the partition are
scrubbed back to their original values. Therefore, this mode
does not allow partitions to have overlapping columns.

Choosing AO/M or SC/M has an impact on both
power consumption and performance, as discussed in later
sections.

2.2 Power consumption and performance

Power consumption includes the current driven by
the elements involved in a given computation, supply
voltage, and operating frequency. There are many power
consumption metrics taking into account different variables
according to a given design and project requirements.

There are also a number of processor performance
metrics. Nevertheless, all of them are based on the system
behaviour in some given time length (Noergaard, 2013).
Considering that, performance can be expressed as a time
unit.
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The relation between power and time is stated as seen
in equation (1).

Energy = Power × Time (1)

where Energy is given in joule (J); Power in watt (W);
and Time in seconds (s).

According to Hennessy and Patterson (2006), energy is
generally a better metric to compare processors efficiency,
since energy is tied to a given task and the time required
to complete that task. In our case, this specific task is the
reconfiguration process.

On the other hand, power consumption can be employed
as a constraint in the system. Power can be described as
seen in equation (2).

Power = V oltage× Current (2)

where V oltage is given in volt (V); and Current in
ampere (A).

In turn, Power can be divided into dynamic and static
power, giving the total power tp:

Power ≡ tp = PwrDYNAMIC + PwrSTATIC (3)

Dynamic power PwrDYNAMIC is basically defined by
transistors switching and capacitive loads, i.e., signals
toggling together with load capacitance being charged and
discharged. PwrDYNAMIC can be minimised by lowering the
circuit supply voltage. A well-known technique to handle
PwrDYNAMIC is the dynamic voltage and frequency scaling
(DVFS) (Nunez-Yanez et al., 2016; Le Sueur and Heiser,
2010; Kim et al., 2018; Digalwar et al., 2017).

On the other hand, static power PwrSTATIC is basically
the current leakage in transistors when in the quiescent
condition. To minimise the PwrSTATIC one has to cut-off
unused paths in the circuit. A well-known technique to cope
with PwrSTATIC is the dynamic power management (DPM)
(Paul, 2014).

As observed by Hennessy and Patterson (2006), voltage
dropping from 5 V to approximately 1 V has been mainly
responsible for both dynamic power and energy reductions
in the past two decades.

3 Runtime reconfigurable platform design

A general reconfigurable processor architecture includes
a fixed hardware part along with a changeable hardware
area and a communication bus between them. The
communication bus can even be divided into data bus and
dedicated configuration lines.

To abstract this general architecture, and without loss
of generality, we adopted a runtime reconfigurable design
proposed by Loubach (2016). That design is further
developed and extended in the present paper, where it
is introduced as a runtime reconfigurable design named
FPGA-based runtime partial reconfigurable (FRunPR)
platform.

FRunPR platform is intended to abstract most of the
implementation details and processor specific information.

It also aims to be scalable. This scalability aspect is related
to the platform characteristic to host a number of different
functionality over time enabled by hardware FR, and mainly
PR.

Two different areas comprise the FRunPR platform
design. A fixed hard-core processor area named
programmable device (ProgDev), and a reconfigurable
area named reconfigurable device (ReconDev), as
shown in Figure 1. Notice that the definitions of the
FRunPR terms follow the idea of Chattopadhyay (2013).
Thus, programmable relates to processors governed by
high-level languages with fixed hardware architecture,
and reconfigurable refers to runtime changeable low-level
switches architecture allowing different functionality to
take place usually written on a HDL.

Figure 1 FPGA-based runtime partial reconfigurable (FRunPR)
platform design with ProgDev and ReconDev areas

FRunPR

ProgDev

ReCon

ReMan

Prosopon

Repository

ReconDev

Reconfig./
Partitions

Area

Communication

Bus

Notes: ReconDev shows the (reconfigurable) partitions area
able to be divided into multiple partitions. The
communication between these two areas is established
by a dedicated bus.

The ProgDev area abstracts the programmable device area
of a given heterogeneous hardware architecture. The main
component of ProgDev is the reconfiguration manager
(ReMan). It is a piece of software that implements
the reconfiguration logic for the system and abstracts
specifics about the underlying reconfiguration process.
ReMan also performs the reconfiguration scheduling, which
is so far a static scheduling. In the ProgDev area,
there is also a memory space named prosopon repository
dedicated to store the reconfiguration bitstreams used in the
reconfiguration process. This repository is new related to
the design presented in Loubach (2016).

ReconDev area, on the other hand, abstracts the
reconfigurable area, i.e., FPGA, in a general heterogeneous
hardware architecture. The main components of ReconDev
are partitions, which are logically and physically defined
areas in the FPGA able to host different hardware functions
or implementations. The different hardware functions
implementations are named prosopons in our design, and
they are represented by the symbol Π. In view of this, each
partition is able to host different Πs along time. The word
prosopon comes from the Ancient Greek meaning ‘person’.
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Prosopons are regarded as abstractions of device specific
bitstreams, i.e., implementations of functions that are used
to modify a given partition inside the reconfigurable area.
Notice that FRunPR platform design does not restrict either
the number of partitions on a design or its sizes or
interfaces. It is expected that a third-party employed design
flow provides means to define those requirements.

As illustrated in Figure 1, ProgDev and ReconDev
exchange information by means of a dedicated
communication bus. That bus encapsulates a w-byte width
data bus, and control bus lines containing signals to request
the initialisation of reconfiguration and also to monitor the
reconfiguration status, e.g., ready to start, done, error.

The reconfiguration controller (ReCon) inside the
ProgDev is another component responsible for abstracting
away the specific device details required for the
reconfiguration process, i.e., communication protocol, and
provides the implementation of the required software
and hardware modules that enable ReMan to control the
allocation of prosopons on partitions over the time. ReCon
is also new with respect to the design presented in Loubach
(2016).

This proposed platform design abstracts a heterogeneous
hardware architecture that comprises a programmable
device, such as an embedded processor or microcontroller
unit, and a reconfigurable device, such as a modern
partial reconfigurable FPGA. These abstractions are general
enough to capture a number of commercially available
off-the-shelf (COTS) devices, from different vendors, and
can also be employed to define design requirements for
ASIC development. With these characteristics, we intend to
address both generality and applicability in our FRunPR.

In FRunPR, ProgDev is the one controlling which
configuration, i.e., which prosopon must be loaded into a
given partition inside the ReconDev. This is achieved by
ReMan, implemented as an embedded software based on C
programming language.

ReMan is basically responsible for:

• ProgDev’s central processing unit initialisation

• direct memory access (DMA) setup, so that ReCon is
able to efficiently transfer prosopons to ReconDev

• prosopon fetching from the repository, using a static
scheduling.

ReMan works together with ReCon, which in turn is
responsible for:

• communication initialisation with ReconDev

• FR and PR requestings

• reconfiguration signals monitoring, such as
‘configuration ready to start’, ‘configuration done’, or
‘configuration error’

• finishing the FR and PR processes.

Before being able to be runtime partially reconfigured,
ReconDev must be first full configured once. In this way,

it becomes aware of its available partitions. Then, requests
for PR can take place.

The hardware implementation process of both FR and
PR are out of the scope of this paper. We consider that
the reconfiguration bitstreams are ready-made to be used
in the proposed platform design. Although, we point some
directions.

In a high-level abstraction, the basic steps for hardware
implementation generally include:

• describing the hardware function without any
partitions at first place

• identifying the parts able to be runtime reconfigured
into partitions

• defining the logical and physical areas for partitions

• implementing each partition prosopon

• generating a FR bitstream and a PR bitstreams for
each partition’s prosopon.

4 Power consumption and performance models

Notice that the models, experimental and analytical,
do not depend on the number of partitions in the
reconfigurable area. Both full and PRs are requested
through a communication bus, as illustrated in FRunPR
platform design (Figure 1), and are therefore serialised.

In this sense, we are interested in

1 the voltage lines responsible to supply the power to
the reconfiguration circuitry

2 the time to send the configuration bitstream,
acknowledge the configuration, and complete it.

4.1 Experimental power consumption model

The experimental power consumption model pEXP used in
this work is described in equation (4). This first model
was applied to calculate the power consumption for the
performed experiments introduced in Section 5.

pEXP = iRMS × υ

=
iPEAK√

3
× υ

(4)

where iPEAK is the current peak measured when the
reconfiguration process takes place; and υ is the involved
circuit supply voltage. iPEAK was measured from the voltage
line, which supplies power to the reconfiguration circuitry,
by using an onboard digital-power supply monitor, i.e.,
LTC2978. iRMS is discussed in the next section.

The following constraint is applied to equation (4).

0 < υ ≤ VMAX (5)

where VMAX stands for the maximum supported circuit
supply voltage.
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4.1.1 Current measurement considerations

When measuring the power consumption, a current peak
iPEAK resembling a triangle waveform (Figure 2) was
noticed in the moment of the reconfiguration process. Thus,
the root mean square (RMS), given in equation (6), was
used to obtain iRMS, which is in the experimental power
consumption formulation (4), previously described.

iRMS =

√
1

T

∫ T

0

i(t)2 dt (6)

where iRMS is the RMS value of the measured current; T
is the signal period and i(t) is the function expressing the
current over the time.

Figure 2 A triangle waveform, observed when the
reconfiguration process occurs, showing the current
rising from time 0 to t1, where iPEAK takes place,
and the falling part from t1 to t2

i

t

iPEAK

t10 t2

Regarding i(t), there is a linear function from time 0 to t1,
and from t1 to t2, as illustrated in Figure 2. This function
is expressed in equation (7).

i(t) =

{
iPEAK × t

t1
, 0 ≤ t < t1 (rising part)

iPEAK × t2−t
t2−t1

, t1 ≤ t < t2 (falling part)
(7)

By replacing equation (7) in equation (6), equation (8) is
obtained.

i2RMS =
i2PEAK × t2

3T
(8)

Considering T = t2, and the duty-cycle equals to 100% for
this one-time peak signal in equation (8), the RMS current
is finally given by equation (9).

iRMS =
iPEAK√

3
(9)

4.2 Analytical power consumption model

The proposed analytical power consumption model p
developed and applied in this work is described in
equation (10). This model was used to estimate the power
consumption for the PR process.

p =
1

2
× C × υ2 × 1

τ
× π × µm × γ (10)

where C is the load capacitance in farad (F); υ is the
involved circuit supply voltage; τ is the configuration data
clock period in seconds; π is the prosopon size in bytes;
µm with m ∈ {AO/M,SC/M}, is given by equations (11)
and (12) related to the configuration bitstream mode, i.e.,
AO/M or SC/M; and γ = 1 × 10−6 is a heuristic constant.

µAO/M =
ΠSC/M

ΠAO/M
× 1.2 (11)

µSC/M =
ΠSC/M

ΠAO/M
× 1.8 (12)

The ΠSC/M size represents a fraction ≤ 1 of the ΠAO/M
size. As mentioned in Subsection 2.1, AO/M is based
on a two-pass memory writing, and SC/M is based on
an one-pass. Thus, AO/M tends to contain more data
compared to SC/M. However, SC/M always changes the
entire memory column, i.e., regions inside the partition are
rewritten, and regions outside the partition are scrubbed
back.

Considering this theory and by observing the
experimental data values, we tunned our analytical model
to capture this behaviour: preserving (AO/M) or not
preserving (SC/M) some columns’ stored data. Thus, the
configuration bitstream mode AO/M represents a number
20% bigger the ratio ΠSC/M

ΠAO/M
, while the SC/M represents

80%, where data are always rewritten.
C is mainly related to the transistors number connected

to a given output, and circuit process technology, then
giving both the wires and transistors capacitance as an
equivalent or lumped capacitance (Hennessy and Patterson,
2006).

The following constraints are applied to equation (10).

C > 0 (13)

VMIN ≤ υ ≤ VMAX (14)

where VMIN and VMAX stand for the minimum and the
maximum supported circuit supply voltages.

1

fMIN
≤ τ ≤ 1

fMAX
(15)

where fMIN and fMAX stand for the minimum and the
maximum supported reconfigurable device’s data clock
frequencies.

0 <
n∑

i=1

πi ≤ πMAX (16)

where πMAX stands for the maximum available configuration
memory size supported by the reconfigurable device, and n
is the total numbers of prosopons.

The model (10) only accounts the term comprising the
dynamic power and does not consider the static power term.

In this case, as we are mainly interested in
the reconfiguration phase, static power may be
neglected because the hardware part responsible for the
reconfiguration process can be turned-off when not being
used. However, there is still the prosopons repository,
which is a memory, that may need power all the time if it
is based on a non-persistent memory.
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4.2.1 Considerations about the term 1
2Cυ2

The capacitance C is given in equation (17), where q
stands for the charge in coulombs, and V for the potential
difference.

C =
q

V
(17)

By integrating the potential difference V = q
C , starting from

uncharged to charged Q, one obtains the stored capacitor
energy EC , as described in equation (18).

EC =

∫ Q

0

q

C
dq =

1

2
× C × V 2 (18)

4.3 Analytical performance model

Maximising performance means to minimise the time
spent to execute a given computation, as described in
equation (19). In our case, the given computation is the
reconfiguration process. Therefore, performance is about
time consumption in the proposed model.

Performance =
1

ExecutionTime
(19)

The developed performance model t is described in
equation (20). This model was used to estimate the time
spent in the PR processes.

t = π × 1

ω
× τ (20)

where π is the prosopon size in bytes; ω is the data bus
width in bytes; and τ is the configuration data clock period
in seconds.

The following constraint is applied to equation (20).

ωMIN ≤ ω ≤ ωMAX (21)

where ωMIN and ωMAX stand for the minimum and the
maximum data bus widths supported by the reconfigurable
device.

4.4 Power consumption and performance analyses

Models (10) and (20) describe our analytical power
consumption and performance estimates. Notice those
two objectives, i.e., minimise power and minimise time,
conflicts to each other. Minimising power may cause the
time, i.e., reconfiguration time, to increase. Conversely,
minimising time may cause the power consumption to
increase. In this sense, one may use the Pareto approach to
cope with this multi-objective optimisation problem.

5 Experimental setup

To test and assess the proposed analytical power
consumption (10) and performance (20) models, we
implemented the FRunPR platform design in an
experimental setup and performed measurements.

Figure 3 FRunPR platform design implemented considering
one partition named Partition1 able to host
different Π

FRunPR− Implemented

ProgDev

ReCon

ReMan

Repository

Π
AO/M
CNT

, Π
SC/M
CNT

Π
AO/M
PWM

, Π
SC/M
PWM

ReconDev

Reconfig./
Partitions

Area

Partition1

Communication

Bus

Notes: The prosopons Π
AO/M
CNT , ΠSC/M

CNT , ΠAO/M
PWM , and Π

SC/M
PWM stands

for Π considering AO/M and SC/M. They are located in
the prosopons repository inside ProgDev.

The FRunPR platform design was implemented considering
one partition, named Partition1, in the ReconDev area,
as illustrated in Figure 3.

Two different experiments were conducted intending to
exercise the runtime PR.

In the first experiment, two different prosopons were
developed for the Partition1 and located at the prosopons
repository, as shown in Figure 3. One prosopon implements
a simple incremental counter function, ΠCNT, and the other
implements a pulse width modulation function, ΠPWM.

For each one of the two prosopons, i.e., ΠCNT and ΠPWM,
we generated two different configuration mode versions.
One version generated to be according to AO/M, and the
other according to SC/M. This way, we could not only
change the hardware functionality at runtime, through PR,
but also verify the impact each configuration mode and
prosopon sizes cause in the reconfiguration process in terms
of power consumption and performance.

A second experiment was also carried out. That one
considered a setup with one partition as well, however,
its two prosopons implemented two different algorithms
for encryption purposes: the advanced encryption standard
(AES) (Daemen and Rijmen, 2002b), ΠAES; and the data
encryption standard (DES) (Daemen and Rijmen, 2002a),
ΠDES.

In the same way, as in the first experiment, each
prosopon has also two different versions. One version
generated to be according to AO/M, i.e., ΠAO/M

AES and Π
AO/M
DES ,

and the other according to SC/M, i.e., ΠSC/M
AES and Π

SC/M
DES .

The second experiment considered the prosopons repository
containing both versions of ΠAES and ΠDES.

For each experiment, ProgDev commanded an one-time
FR in ReconDev, so that the latter becomes aware
of Partition1. Next, ReMan together with ReCon
commanded static scheduling PRs considering the
prosopons located at the repository.
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A Cyclone V SoC development kit was used to
implement FRunPR, as illustrated in Figure 4. This
hardware kit is built with a fabric containing a dual-core
ARM Cortex-A9 and a FPGA with 110 K logic elements.

Figure 4 Hardware board used to implement the FRunPR
platform design

Notes: The grey square highlights the SoC fabric. The grey
ellipse under the SoC fabric highlights the power
monitor connector used for onboard power
consumption measuring.

Power consumption measurements were performed using a
DC1613A, which is a USB-to-power management bus. The
Cyclone kit is equipped with dedicated circuits allowing
onboard power measuring.

Performance metrics, i.e., the time to complete a
reconfiguration process, was measured with an oscilloscope.

Prosopons were written using Verilog in the Quartus
software. ReCon and ReMan were implemented using C
programming language and built with the GNU compiler
collection (GCC)-based arm-altera-eabi toolchain.

Notice that as mentioned before, our models and
platform design abstracts a heterogeneous hardware
architecture that comprises a programmable device, such
as an embedded processor or microcontroller unit, and
a reconfigurable device, such as a modern partial
reconfigurable FPGA. These abstractions are general
enough to capture a number of COTS devices, e.g.,
Intel-FPGA and Xilinx. Also, these devices present all the
described parameters of the models (10) and (20), and all
the areas of the FPGA-based runtime partial reconfigurable
platform design, making it simple to use another hardware
kit besides the one shown in this paper.

6 Results and discussion

Table 1 shows all variable values used in the experimental
measuring and in the models evaluation analyses.

6.1 Static data

Table 2 shows each generated prosopon with its respective
size. Notice that for SC/M, prosopons have the same size,

since this mode always overwrites the whole columns, up
and down, considering the whole partition area.

Table 1 Experimental and analytical variables and values

Variable Description Value

C Lumped capacitance considered for 220 pF
the reconfiguration process

υ Circuit supply voltage 1.5 V
r Sense resistor 3 mΩ

τ Configuration data clock period 1
125×106

s
(maximum supported by the device)

γ Heuristic constant 1 × 10−6

ω Data bus width, encapsulated within 2 bytes
the communication bus

Table 2 Generated prosopons size

π Mode Size in byte

ΠCNT AO/M 634,636
ΠCNT SC/M 514,660
ΠPWM AO/M 644,568
ΠPWM SC/M 514,660
ΠAES AO/M 3,082,040
ΠAES SC/M 1,873,812
ΠDES AO/M 3,001,156
ΠDES SC/M 1,873,812

6.2 Experimental measuring

Table 3 presents the experimental power consumption
measurements for each prosopon bitstream mode. pEXP is
described in equation (4).

Table 3 Experimental measurements related to power consumption

π Mode iPEAK × 10−3 pEXP × 10−3

ΠCNT AO/M 25.80 22.34
ΠCNT SC/M 30.20 26.15
ΠPWM AO/M 24.67 21.36
ΠPWM SC/M 30.40 26.33
ΠAES AO/M 76.80 66.51
ΠAES SC/M 67.00 58.02
ΠDES AO/M 74.00 64.09
ΠDES SC/M 68.27 59.12

With respect to power and considering the AO/M, only
columns belonging to a partition are effectively written in
the CRAM. This is basically due to the masked bitwise
operations, i.e., ‘AND with one’ and ‘OR with zero’, which
are intended to preserve unchanged the column regions
outside the partition under PR. In this case, it means less
memory written and consequently less power consumed for
ΠCNT and ΠPWM. However, when taking larger prosopons,
such as ΠAES or ΠDES, this two-pass masking operation
caused an increase in power consumption compared to
SC/M.
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Considering the SC/M, CRAM partition column bits
are always overwritten with new data and CRAM column
bits located outside partition area are also overwritten with
their original values. It means more memory written, and
therefore more power consumed, as shown in Table 3
for SC/M ΠCNT and ΠPWM. Nevertheless, when larger
prosopons are considered, i.e., ΠAES and ΠDES, this one-pass
writing method is less power hungry than AO/M.

Table 4 shows the experimental performance
measurements for each prosopon bitstream mode.

Table 4 Experimental measurements related to performance

π Mode Time × 10−3

ΠCNT AO/M 2.73
ΠCNT SC/M 2.23
ΠPWM AO/M 2.76
ΠPWM SC/M 2.22
ΠAES AO/M 12.70
ΠAES SC/M 7.76
ΠDES AO/M 12.40
ΠDES SC/M 7.76

With respect to performance, the two-pass AO/M tends to
take more time to complete when compared to the one-pass
SC/M. This fact can be noticed in Table 4.

6.3 Model assessment

The assessment of the analytical power consumption model,
described in equation (10), is presented in Table 5. Values
are estimated for each prosopon bitstream mode along with
the error ϵp, and the percentage error %ϵp, both related to
power.

Model error ϵ is computed as seen in equation (22),
taking into consideration the values estimation resulted
from the proposed analytical models (10) and (20), and the
experimentally measured values.

ϵ = Analytical− Experimental (22)

Model error percentage %ϵ is computed as seen in
equation (23).

%ϵ =

∣∣∣∣Analytical− Experimental
Experimental

∣∣∣∣× 100 (23)

The analytical power consumption model average accuracy
is 89.76%, with a minimum error of 4.59%, and a maximum
error of 14.49% (Table 5).

The assessment of analytical performance model,
described in equation (20), is presented in Table 6. Values
are estimated for each prosopon bitstream mode along with
the error ϵt, and the percentage error %ϵt both related to
performance.

The analytical performance model average accuracy is
94.82%, with a minimum error of 2.93%, and a maximum
error of 7.68% (Table 6).

Table 7 shows the energy consumption comparison
between the computed energy EE based on the

experimentally measured values, and the estimated energy
EA based on the analytical models. It also presents the
error ϵE and the error in percentage %ϵE with respect to
energy. The average accuracy is 88.38%.

Table 5 Analytical power consumption model results evaluation

π Mode p× 10−3 ϵp × 10−3 %ϵp

ΠCNT AO/M 19.11 –3.24 14.49
ΠCNT SC/M 23.24 –2.91 11.13
ΠPWM AO/M 19.11 –2.26 10.57
ΠPWM SC/M 22.88 –3.44 13.08
ΠAES AO/M 69.57 3.05 4.59
ΠAES SC/M 63.44 5.42 9.34
ΠDES AO/M 69.57 5.48 8.55
ΠDES SC/M 65.15 6.03 10.19

Notes: 10.57 ≤ %ϵp ≤ 14.49, for ΠCNT and ΠPWM.
4.59 ≤ %ϵp ≤ 10.19, for ΠAES and ΠDES.

Table 6 Analytical performance model results evaluation

π Mode t × 10−3 ϵt × 10−6 %ϵt

ΠCNT AO/M 2.54 –190 7.01
ΠCNT SC/M 2.06 –170 7.68
ΠPWM AO/M 2.58 –180 6.58
ΠPWM SC/M 2.06 –160 7.27
ΠAES AO/M 12.33 –370 2.93
ΠAES SC/M 7.50 –260 3.41
ΠDES AO/M 12.00 –400 3.19
ΠDES SC/M 7.50 –260 3.41

Notes: 6.58 ≤ %ϵt ≤ 7.68, for ΠCNT and ΠPWM.
2.93 ≤ %ϵt ≤ 3.41, for ΠAES and ΠDES.

Table 7 Energy consumption estimation and comparisons

π Mode EE EA ϵE %ϵE

ΠCNT AO/M 61.00 48.50 –12.49 20.48
ΠCNT SC/M 58.32 47.85 –10.48 17.96
ΠPWM AO/M 58.97 49.26 –9.70 16.46
ΠPWM SC/M 58.45 47.11 –11.34 19.40
ΠAES AO/M 844.69 857.61 12.93 1.53
ΠAES SC/M 450.26 475.51 25.24 5.61
ΠDES AO/M 794.66 835.10 40.44 5.09
ΠDES SC/M 458.80 488.32 29.52 6.44

Notes: EE , EA, and ϵE values are in × 10−6.
16.46 ≤ %ϵE ≤ 20.48, for ΠCNT and ΠPWM.
1.53 ≤ %ϵE ≤ 6.44, for ΠAES and ΠDES.

6.4 Power consumption vs. time

Notice that τ is the coupling variable between models (10)
and (20). τ is the one which mainly decides the trade-off
between power consumption and time spent in the PR
process.
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Figure 5 (a) (b) (d) (e) Power consumption vs. time: curves were obtained based on the introduced analytical models for power
consumption and performance, comparing the experimentally obtained values (exp.) to the estimated ones (est.), for both
AO/M and SC/M (c) (f) Energy consumption vs. time: energy experimentally measured and estimates based on the
analytical models along with two lines for both AO/M and SC/M showing the energy variation in time
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Considering this previous statement, we can obtain p′ from
equation (10) and t′ from equation (20) as follows. In this
sense, some terms will remain constant, held by K1 and
K2.

p′ =
K1 × π × µm

τ
(24)

where K1 = 0.5 × C × υ2 × γ.

t′ = K2 × π × τ (25)

where K2 = 1
ω .

Given this, we drew the ‘power vs. time’ curve for both
AO/M and SC/M by assuming K1 and K2 as constants and
with the values as stated in Table 1. Therefore, by changing
the other variables values in equations (24) and (25), these
curves are obtained, as illustrated in Figure 5.

Each one of Figures 5(a) and 5(d) shows two different
curves based on equations (24) and (25). One curve refers
to AO/M, and the other to SC/M.

The AO/M curve considers the prosopon size variation
from Π

AO/M
CNT to Π

AO/M
PWM , illustrated in Figure 5(a), and from

Π
AO/M
AES to Π

AO/M
DES , as shown in Figure 5(d).

Notice that both reconfiguration time and energy
consumption are invariant to the type of application being
configured. However, they depend on the application size.
Thus, the prosopon size is part of our models, as in

equations (10) and (20). Because of this, the models’
assessment took into consideration the prosopons sizes
variations in bytes, as shown in Table 2.

In this context, the prosopons sizes are representative,
to the best of our knowledge. This relates to a main PR
benefit, i.e., just a small part of the system is intended to
be reconfigured at a time. Other researches (Bonamy et al.,
2012) also use prosopon sizes similar to the ones used here.

The SC/M curve considers no variation in prosopon
size, since Π

SC/M
CNT and Π

SC/M
PWM have the exact same size as

a characteristic of SC/M. This also holds for Π
SC/M
AES and

Π
SC/M
DES .
Both curves also take into account τ varying from
1

62.5×106 to 1
125×106 . µm is also changing value according

to equations (11) and (12). The other variables such as C,
υ, γ, and ω remained fixed with values as stated in Table 1.

The experimental measuring values for AO/M and
SC/M are also shown in Figures 5(a) and 5(d).

Figures 5(b) and 5(e) exhibit the same estimation curves
as Figures 5(a) and 5(d). Nevertheless, Figures 5(b) and 5(e)
show the analytical model estimation values closer to the
curves, as expected.

Notice that AO/M is more efficient in terms of
power consumption, and SC/M in performance, taking
into account ΠCNT and ΠPWM. Conversely, SC/M is more
efficient in both power and time regarding ΠAES and ΠDES.
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The values shown in Figure 7 are graphically displayed
in Figures 5(c) and 5(f) considering the time axis. That
figure also presents two lines, one for AO/M and one
for SC/M, showing energy variation in time between the
prosopons alike.

In the energy consumption vs. time perspective, SC/M is
a better solution for both energy and time when compared
to AO/M, for the accomplished experiments.

7 Related work

The embedded systems community is continuously seeking
for low power consumption and high performance
applications (Wong et al., 2011; Portilla et al., 2007; Ho
et al., 2006).

The research of Bonamy et al. (2012) investigates power
consumption related to the dynamic and PR approach.
Those authors propose three power models with complexity
and accuracy trade-offs. Their medium complexity model,
which is comparable to our power model, presented an
accuracy of 90.2% on average.

An estimation of power consumption when running
dynamic PR is presented in Rihani et al. (2016). The
authors evaluated the PR influence on the performance of
the global design. However, no accuracy is mentioned in
that research.

Vera et al. (2009) proposed a dynamically reconfigurable
computing model applicable for video processing
applications. López et al. (2014) also considered the
dynamic and PR subject when developing a power-aware
multi-objective evolvable FPGA-based hardware. They
measured the power consumption by an instrumentation
circuit involving an ADC.

According to Mu and Lysecky (2011), runtime
reconfiguration has already demonstrated a number of
benefits in terms of power consumption and performance.
In their research, an online estimation method is presented
to evaluate the power and performance metrics for
runtime partial reconfigurable embedded systems based
on the current system execution behaviour. The online
estimation model presented an average accuracy of 82% for
performance and 76% for power.

The work of Reis and Fröhlich (2020) claims for a
deterministic FPGA reconfiguration mechanism that can
mitigate the interference generated by other operations
occurring in parallel. A deterministic reconfiguration is
relevant to aid in power consumption and performance
analysis.

A power estimation model, applicable to SoCs
comprised of CPU and coarse-grained reconfigurable
arrays, is presented by Deng et al. (2017). Those authors
claimed that power modelling is a critical component in
optimisation flows such as design space exploration (DSE).

A proposal for energy efficiency using PR is presented
by Liu et al. (2013). That research indicates the
minimisation of reconfiguration time overhead as a key
element, and also points out that PR can eliminate static
and dynamic power.

Wehner et al. (2016) evaluates timing and power
consumption considering a Zynq FPGA. The authors
discuss performance, reconfiguration process, and the
undefined behaviour during reconfiguration. PR is
employed as a mean to reduce system power consumption,
and also to contribute to the systems upgrade.

Performance scalability in a reconfigurable processor
is presented by Takano (2017, 2012). The author consider
issues when dealing with instruction-level parallelism
(ILP), in which partial datapath reconfiguration is
comparable to instruction hardware fetching and that
regular processor-based system has already reached its
limit.

An analytical processor performance and power
modellings are presented by den Steen et al. (2016). The
authors claim that power and performance optimisation
can lead to substantial energy efficient and that analytical
models can be helpful for DSE tools since they can provide
fast estimates and insights.

A multi-objective DPM using voltage and frequency
scaling and power gating is proposed by Rahmani et al.
(2017). The research addresses the need to consider
characteristics in runtime to achieve better performance
while keeping up with peak power upper bound.

A power budget and performance optimisation related to
network-on-chip (NoC) is discussed by Wang et al. (2016).
Most of the research in this area considers techniques
involving frequency and voltage scaling.

A scalable DPM scheme for SoC is presented in
Shafique et al. (2016) aiming to energy efficiency. The
authors change applications degree of parallelism in runtime
depending on the workload and performance constraints.

A reconfigurable hardware accelerator is presented by
Babecki et al. (2016). The authors mention an improvement
in energy efficiency, however, it is not permitted for more
than one application to reuse those hardware accelerators.

Nunez-Yanez et al. (2016) explore energy optimisation
in FPGA with voltage, frequency, logic scaling, and power
gating. However, the latter presents significant overheads.

In summary, these research works take into account
different architectures and reconfigurable hardware
arrangements, as well as some power consumption and
performance improvement techniques, mainly based on
frequency and voltage scaling. Our paper proposes a
runtime reconfigurable platform design and two models
able to estimate power consumption and performance from
a different perspective, i.e., when the system is under
runtime PR.

Runtime PR can also be applied as a tool addressing
both power consumption and performance optimisations.
Depending on the runtime constraints a system has to
comply with, a reconfiguration can take place to load a ‘less
hungry’ power consumption algorithm, or even a better
performance one to attend a hard deadline.
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8 Conclusions

We presented in this paper a heterogeneous SoC
FPGA-based reconfigurable platform design together with
power consumption and performance analyses applicable to
the PR process.

Two analytical models were proposed. One for power
consumption and another for performance estimation.
In addition, our platform design was implemented, and
experimental measuring was compared to model estimates.

Results show a maximum error of 14.49% for the power
consumption model, 7.68% for the performance model, and
20.48% for the energy consumption during the PR process
involving two different CRAM writing modes.

According to our experiments, it can be concluded that
the ‘scrub’ mode (SC/M) is more efficient in terms of both
power consumption and performance for larger prosopons
size, e.g., ΠAES and ΠDES. However, considering smaller
prosopons, such as ΠCNT and ΠPWM, the ‘and/or’ mode
(AO/M) and its two-pass fashion plays better for the power
consumption constraint.

The introduced models represent a formal estimation
tool with an average accuracy of 89.76% for power
consumption, 94.82% for the performance, and 88.38% for
the energy consumption, applicable to the trade-off issue
involving power consumption and performance.

The proposed models can be used together with
DVFS techniques to achieve an optimal power-performance
runtime PR scheme. This can also contribute as a possible
input to design space exploration tools when simulating a
number of different possible scenarios.
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