Control allocation in ground vehicles
by John H. Plumlee, David M. Bevly, A. Scottedward Hodel
International Journal of Vehicle Design (IJVD), Vol. 42, No. 3/4, 2006

Abstract: We examine the use of quadratic programming (QP)-based control allocation for ground vehicles with multiple inputs. This control problem is relevant for safety systems, such as stability control and driver assistance technologies, and autonomous vehicle control. The control objective is to track a desired yaw rate trajectory while minimising vehicle side slip. The proposed QP-based control allocation law is simulated in a closed loop with a non-linear vehicle. Vehicle attitude commands are generated by a linear quadratic regulator whose gains are designed around a linear vehicle model to arrive at a combination of vehicle commands. The closed loop system is tested on three simulated vehicle models each possessing different input capabilities. The simulation tests include both nominal and failure scenarios of operation.

Online publication date: Fri, 21-Jul-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com