Proceedings of the International Conference
I W S S I P   2005
12th INTERNATIONAL WORKSHOP ON SYSTEMS, SIGNALS & IMAGE PROCESSING

22 - 24 September 2005, Chalkida Greece
 
(from Chapter 1: Invited Addresses and Tutorials on Signals, Coding, Systems and Intelligent Techniques)

 Full Citation and Abstract

0 Title: Real time car detection in images based on an AdaBoost machine learning approach and a small training set
  Author(s): Milos Stojmenovic
  Address: SITE, University of Ottawa, Ottawa
Milos22 @ gmail.com
  Reference: SSIP-SP1, 2005  pp. 119 - 124
  Abstract/
Summary
Our primary interest is to build fast and reliable object recognizers in images based on small training sets. This is important in cases where the training set needs to be built mostly manually, as in the case that we studied, the recognition of the Honda Accord 2004 from rear views. Our experiments indicated that the set of features used by Viola and others for face recognition was inefficient for our problem; therefore, each object requires its own custom-made set of features for real time and accurate recognition. We described a set of appropriate feature types for the considered car recognition problem, including a redness measure and dominant edge orientations. The existing edge orientation bin division was improved by shifting so that all horizontal (vertical, respectively) edges belong to the same bin. This feature set was a basis for building a fast and reliable car recognizer based on small training set, consisting of 155 positive and 760 negative images. It detects back views of Honda Accords with a 98.7% detection rate and 0.4% false positive rate on the training set, and with 89.1% detection rate and a 1.48 x 10-6 false positive rate on a test set of 106 images containing roughly 17.5 million tested sub windows.
 
PDF  View Full PDF
 only subscribers
 
PDF  Click here to Order On-line
 

 We welcome your comments about this Article