Study on image feature recognition algorithm and its application in public security management
by Xiaoyi Yang; Qian Wu; Xinmei Deng
International Journal of Information Technology and Management (IJITM), Vol. 18, No. 2/3, 2019

Abstract: Public security is the topic of common concern of the government and the common people. In order to solve the puzzle of image distortion, being complex in algorithm and being difficult to take into account of the overall structure and details of the image in the image recognition algorithm of public security management system, the paper presented a fusion algorithm of texture consistency measure based on bi-orthogonal wavelet transform. By means of the orthogonal wavelet transform, the wavelet transform is used to decompose the source image, and then the low frequency and high frequency wavelet coefficient matrix of the fused image is determined according to a certain proportion and texture measure, thus the fusion image is obtained. The experimental results show that the algorithm can not only distinguish the false edges of the image, but also enrich the details of the image and take into account the overall visual image, so it can better improve the recognition effect of the image in the public security management system.

Online publication date: Thu, 23-May-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information Technology and Management (IJITM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email