Threefold similarity analysis: a case study on crowdsourcing feeds Online publication date: Thu, 23-May-2019
by Kaixu Liu; Gianmario Motta; Tianyi Ma; Ke Fan
International Journal of Information Technology and Management (IJITM), Vol. 18, No. 2/3, 2019
Abstract: Crowdsourcing is a valuable social sensing for the smarter city. We present a framework of crowdsourcing feeds similarity analysis from a threefold point of view, namely image, text, and geography, which is based on similarity analysis, founded on a sequence that goes from coarse to thinner similarity filters. The main idea is to extract feeds within a specific geographic range, and then to analyse similarity of image colour and text in clustered feed sets. The framework enables to identify feeds that report the same issue, and hence to filter redundant information. Based on proved methods and algorithms, such framework has been implemented in a software application, called CITY FEED, which is used by the Municipality of Pavia.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information Technology and Management (IJITM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com