Improving smart home security; integrating behaviour prediction into smart home
by Arun Cyril Jose; Reza Malekian; Babedi B. Letswamotse
International Journal of Sensor Networks (IJSNET), Vol. 28, No. 4, 2018

Abstract: The paper highlights various security issues in existing smart home technology and its inhabitant behaviour prediction techniques and proposes a novel behaviour prediction algorithm to improve home security. The algorithm proposed in this work identifies legitimate user behaviour and distinguishes it from attack behaviour. The work also identifies the parameters necessary to predict user behaviour during the seven week learning period. The paper identified three factors namely time parameter, light parameter, user's key placement behaviour to successfully predict user behaviour. The algorithm learned normal and suspicious user behaviours during the seven week training period and naïve Bayesian network was designed based on the knowledge. The newly developed security algorithm was implemented in a studio apartment for a period of two weeks which was accessed 24 times generating two warnings and one alarm.

Online publication date: Tue, 04-Dec-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com