Categorisation of driving scenario complexity based on primary driving tasks and road characteristics Online publication date: Mon, 20-Aug-2018
by Miguel Angel Galarza; Josep Paradells
International Journal of Vehicle Safety (IJVS), Vol. 10, No. 2, 2018
Abstract: The increasing amount of infotainment services available in vehicles makes it necessary to devise a system capable of managing how information should be delivered and accessed in accordance with the driving complexity scenario. The objective of this study is to provide a useful model for categorising driving scenarios in terms of their complexity. For this purpose, data collected from driving tests are analysed employing data mining techniques and machine learning methods for finding the more influential variables of driving complexity. The input variables used are associated with primary driving tasks and road characteristics available in current vehicles. As a result, the most relevant variables that enable the categorisation of the driving scenario are identified and a model capable of predicting driving complexity in real time is constructed. Given the model accuracy obtained, a practical application could be the adaptation of Human Machine Interfaces (HMI).
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Safety (IJVS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com