Application of cuckoo search in water quality prediction using artificial neural network
by Sankhadeep Chatterjee; Sarbartha Sarkar; Nilanjan Dey; Amira S. Ashour; Soumya Sen; Aboul Ella Hassanien
International Journal of Computational Intelligence Studies (IJCISTUDIES), Vol. 6, No. 2/3, 2017

Abstract: Domestic and industrial pollution affected the water quality to a greater extent. Recent research studies have achieved reasonable success in predicting the water quality using several machine learning based techniques. In the current work, a proposed cuckoo search (CS) has been applied to improve the support in the classification process during the water quality prediction. The proposed model (NN-CS) gradually minimises an objective function; namely the root mean square error (RMSE) in order to find the optimal weight vector for the artificial neural network (ANN). The proposed model was compared with three other well-established models, namely NN-GA (ANN trained with genetic algorithm) and NN-PSO (ANN trained with particle swarm optimisation) in terms of accuracy, precision, recall, f-measure, Matthews correlation coefficient (MCC) and Fowlkes-Mallows index (FM index). The simulation results established superior accuracy of NN-CS over the other models.

Online publication date: Thu, 04-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Intelligence Studies (IJCISTUDIES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email