Fuzzy-based random perturbation for real world medical datasets
by Mary A. Geetha
International Journal of Telemedicine and Clinical Practices (IJTMCP), Vol. 1, No. 2, 2015

Abstract: Privacy preservation is the major concern while real time datasets are handled. Especially, when the data are accessed from cloud, firm privacy algorithms has to be adhered to ensure there is no leak of sensitive data. A specific topic, privacy preserving data mining (PPDM), completely deals with data modification, but also limits information loss. Data perturbation is one of the PPDM techniques, which mostly deals with numerical data and concentrates on retaining statistical properties of data. Perturbation is of two types, additive perturbation and multiplicative perturbation, where generated random data is either added or multiplied with the data, which results in a random modified data. In this paper we propose a model in which the perturbation is done by randomisation, where the data is generated in intervals based on the level of privacy generated from a fuzzy system based on various inputs. Our model is proved to be successful from the experimental analysis performed by validating the model using classification algorithms.

Online publication date: Tue, 09-Jun-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Telemedicine and Clinical Practices (IJTMCP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com