Relative navigation to non-cooperative targets in LEO: achievable accuracy from radar tracking measurements
by Ralph Kahle; Martin Weigel; Michael Kirschner; Sofya Spiridonova; Erin Kahr; Klemens Letsch
International Journal of Space Science and Engineering (IJSPACESE), Vol. 2, No. 1, 2014

Abstract: Any future space debris removal or on-orbit servicing mission faces the problem of the initial relative orbit determination of the servicing satellite to the non-cooperative target. In this work, we analyze the relative navigation accuracy that can be achieved in low Earth orbit, by using ground-based orbit determination from radar tracking measurements for the target, and classical GPS-based orbit determination for the servicing satellite. The analysis is based on the radar tracking measurements obtained from a 10x10x34 cm small object at an altitude of 635 km. The results show that the relative orbit can be determined with accuracy down to 2 m (RMS) in the semi-major axis, and down to 20 m (RMS) in both the radial and normal separations. From the results, we derive requirements on radar-tracking campaigns.

Online publication date: Tue, 13-May-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Space Science and Engineering (IJSPACESE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email