Laser surface texturing of medical needles for friction control Online publication date: Sat, 12-Jul-2014
by Peidong Han; Jaegu Kim; Kornel F. Ehmann; Jian Cao
International Journal of Mechatronics and Manufacturing Systems (IJMMS), Vol. 6, No. 3, 2013
Abstract: Surface texturing has been used to create micro-dimples or micro-channels on medical needles to increase the visibility of ultrasound-guided percutaneous procedures. However, micro-features usually increase the friction between the needle and biological tissue. Higher insertion forces lead to patient discomfort and undesired needle placement errors. The present work investigates the friction between the textured needles and soft tissue. The purpose is to understand the friction behaviour between a textured hard surface and soft materials and to identify texture patterns that would minimise the friction of needle insertion without compromising its ultrasound visibility. Laser surface texturing was performed on medical needles to generate an array of micro-channels with a variety of channel widths, area densities, and channel orientations. A set of friction tests was carried out using an especially designed setup for needle insertion. The effects of channel width, area density, and channel orientation on friction force were experimentally investigated. It was found that the tribological characteristics between a textured hard surface and soft tissue greatly depend on the size, density, and orientation of the micro-features.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mechatronics and Manufacturing Systems (IJMMS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com