Lagrangian particle model LAMBDA: evaluation against tracer data Online publication date: Thu, 17-Sep-2009
by E. Ferrero, D. Anfossi, G. Brusasca, G. Tinarelli
International Journal of Environment and Pollution (IJEP), Vol. 5, No. 4/5/6, 1995
Abstract: The capabilities of the Lagrangian particle model LAMBDA in simulating tracer dispersion are shown. Two different datasets of experimental campaigns proposed in the Manno Workshop (Copenhagen and Lillestrom) are used to compare measured and calculated concentrations. LAMBDA, which is based on the Langevin equation, can use as input higher moments (like skewness and cross-correlations) of the atmospheric probability density function (p.d.f.). The model can take into account the time and space variation of all the input parameters and can use numerical schemes of different complexity depending on the number of available moments of the atmospheric p.d.f. However, it is able to correctly simulate pollutant dispersion using simpler input datasets and proper parametrisations, as was shown in previous papers. The comparisons of observed and predicted concentrations and the model evaluation indicate that LAMBDA can yield reasonably good results.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com