Stroma classification for neuroblastoma on graphics processors
by Antonio Ruiz, Olcay Sertel, Manuel Ujaldon, Umit Catalyurek, Joel Saltz, Metin N. Gurcan
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 3, No. 3, 2009

Abstract: Neuroblastoma is one of the most common childhood cancers. We are developing an image analysis system to assist pathologists in their prognosis. Since this system operates on relatively large-scale images and requires sophisticated algorithms, computerised analysis takes a long time to execute. In this paper, we propose a novel approach to benefit from high memory bandwidth and strong floating-point capabilities of graphics processing units. The proposed approach achieves a promising classification accuracy of 99.4% and an execution performance with a gain factor up to 45 times compared to hand-optimised C++ code running on the CPU.

Online publication date: Tue, 23-Jun-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email