Solutions to the inverse problem in a two-dimensional model for microwave breast tumour detection
by G.G. Senaratne, Richard B. Keam, Winston L. Sweatman, Graeme C. Wake
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 3, No. 1/2, 2007

Abstract: This paper presents an in vivo detection method to estimate the size and the position of a breast tumour using microwave frequencies. At these frequencies there is a significant difference in dielectric properties between a malignant tumour and healthy breast tissue. By considering these properties we solve the forward problem of the signal's scattering effect for a two-dimensional breast model. We use Newton's multidimensional iterative method to solve the inverse problem and compute the unknown location and size of the tumour. Our analytical study suggests that the approach will be capable of detecting a millimetre size tumour inside the breast. Due to the complex scattering from the non-homogeneous internal structure and other complications the microwave measurements can have errors. However, in tests, our algorithm can calculate tumour distance with 0.54% error when there is a 10% error in the value of the microwave field measurements.

Online publication date: Fri, 22-Jun-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email