The application of AI techniques for firearm detection in digital forensic investigation Online publication date: Wed, 01-May-2024
by Suraj Harsha Kamtam; Harjinder Singh Lallie; Muhammad Ajmal Azad
International Journal of Electronic Security and Digital Forensics (IJESDF), Vol. 16, No. 3, 2024
Abstract: The early detection of potentially violent situations involving firearms is a useful aid to law enforcement. AI and automation can complement humans in weapon detection as they excel in repetitive tasks and make clear judgments of ambiguous situations. AI technology can be used in digital forensic investigations to detect objects such as firearms and predict features such as age, and gender. This paper demonstrates the application of a model called you only look once (YOLOv3), a deep neural network, which was used to build a custom firearm detection model. The proposed model can automate the repetitive, tedious and error-prone task of searching through a large number of images for the presence of firearms, thus reducing human effort and stress. Five models have been trained in this paper on different scenarios to understand the performance of YOLOv3 which include one firearm, multiple firearms (pistol and rifle), greyscale images, factual scene and L-shape false positives. Our model achieved a maximum mean average precision of 97.68% and a minimum of 59.41%. The models developed in this work outperform existing models which do not scale well and cannot detect changes in image, noise, shape and background.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electronic Security and Digital Forensics (IJESDF):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com