Multiscale hierarchical attention fusion network for edge detection Online publication date: Fri, 16-Dec-2022
by Kun Meng; Xianyong Dong; Hongyuan Shan; Shuyin Xia
International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Vol. 42, No. 1, 2023
Abstract: Edge detection is one of the basic challenges in the field of computer vision. The results of most recent methods produce thick edges and background interference. The images generated by these networks must be postprocessed with non-maximum suppression (NMS). To tackle the problem, we propose a novel edge detection model that allows the network to concentrate on learning the contextual features of an image, thereby obtaining more accurate pixel edges. To obtain abundant multi-granularity features of image high-level features, we introduce multi-scale feature stratification module (MFM). Then, we increase the constraint between pixels through the edge attention module (EAM), so that the model can obtain stronger feature extraction ability. These new approaches can improve the ability of describing edges of models. Evaluating our method on two popular benchmark datasets, the edge image predicted by this method is superior to existing edge detection methods in subjective perception and objective evaluation indexes.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com