Total interpretive structural modelling of machine learning enablers in the healthcare system
by Pooja Gupta; Ritika Mehra
International Journal of Applied Decision Sciences (IJADS), Vol. 15, No. 3, 2022

Abstract: The primary objective of this research is to build a total interpretive structural model of different enablers, vital to implement machine learning in the healthcare system. This study begins by implementing the progressive methodology of TISM to investigate the mutual dependence among ML enablers in the healthcare system. Further, the classification of enablers has been done based upon the driving power and dependence. A structural model of ML enablers has also been developed using the TISM procedure. Ten enablers of ML implementation have been recognised from the literature and experts' opinions. TISM is applied to develop a six-level hierarchical structural model. The proposed study encourages decision-makers to focus on the necessary steps to implement these enablers. Enablers at the bottom of the TISM hierarchy are the ones with reliable driving power and these the lowest level enablers need more consideration from the top administration.

Online publication date: Wed, 04-May-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Decision Sciences (IJADS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email