Neural network based prediction of less side effect causing cancer drug targets in the network of MAPK pathways
by V.K. Md Aksam; V.M. Chandrasekaran; Sundaramurthy Pandurangan
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 17, No. 1, 2021

Abstract: Computational side-effect prediction tools assist in rational drug design to decrease the late-stage failure of the drugs. Irrational selection of cancer drug targets in the deregulated MAPK pathways causes side effects. Network centralities and biological features - Degree, Radiality, Eccentricity, Closeness, Bridging, Stress, Pagerank centralities, essentiality, pathway-specific proteins, disease-causing proteins, protein domains are exploited quantitatively. We train an artificial neural network (ANN) with 15 selected features for the binary classification of side effects causing and less side-effect causing drug targets among the non-targeted proteins. Top ranked proteins among the Degree, Eccentricity, betweenness centralities, possessing GO-based molecular function, involved in more than one Biocarta pathways, domain content are prone to cause a number of side effects than other centralities and functional features. We predicted the following 15 less side effect causing cancer drug targets - Shc, Rap 1a, Mos, Tpl-2, PAC1, 4EBP1, GAB1, LAD, MEF2, ZAK, GADD45, TAB2, TAB1, ELK1 and SRF.

Online publication date: Tue, 06-Apr-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email