Empirical estimation of various data stream mining methods Online publication date: Wed, 31-Mar-2021
by Ritesh Srivastava; Veena Mittal
International Journal of Computational Intelligence Studies (IJCISTUDIES), Vol. 10, No. 1, 2021
Abstract: Online learning is done in order to work on dynamic environments in which the concept tends to change with time and the accuracy of classifiers decreases. The current and previous research is done in static environments, but there is a need of a real time data streaming due to the potentially larger number of applications available in the scientific and business domains. There are several methods used in learning in the presence of dynamic environments like single classifier methods such as batch and incremental learning approaches, classification methods with explicit drift detection method, windowing techniques and ensemble approaches. This paper, investigates these approaches for determining the best suitable method among them. We utilised light emitting diode (LED) data generator for evaluating the performance of the methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Intelligence Studies (IJCISTUDIES):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com