A multi-view classification and feature selection method via sparse low-rank regression analysis
by Yao Lu; Ying-Lian Gao; Pei-Yong Li; Jin-Xing Liu
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 24, No. 2, 2020

Abstract: In recent years, multi-view classification and feature selection methods have received close attention in many fields. However, in many practical classification problems, the data in each view may contain a lot of noises. In addition, when data are of high dimensions and small sample attributes, it is difficult to remove redundant features in feature selection experiments. To deal with these problems well, the sparse multi-view low-rank regression method is proposed in this paper. The method based on sparse and low-rank theory introduces the penalty factors in the matrix transformation process to decompose the matrix into sparse and low-rank results. The model is constructed by imposing L2-norm and L2,1-norm constraints on the objective function. Experimental results on sequencing data show that the proposed method has superior performance over several state-of-the-art methods in multi-view classification and feature selection.

Online publication date: Wed, 07-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com