Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction
by Vinu Sundararaj
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 31, No. 4, 2019

Abstract: Electrocardiogram (ECG) signal is significant to diagnose cardiac arrhythmia among various biological signals. The accurate analysis of noisy electrocardiographic (ECG) signal is a very motivating challenge. According to this automated analysis, the noises present in electrocardiogram signal need to be removed for perfect diagnosis. Numerous investigators have been reported different techniques for denoising the electrocardiographic signal in recent years. In this paper, an efficient scheme for denoising electrocardiogram (ECG) signals is proposed based on a wavelet-based threshold mechanism. This scheme is based on an opposition-based self-adaptive learning particle swarm optimisation (OSLPSO) in dual tree complex wavelet packet scheme, in which the OSLPSO is utilised to for threshold optimisation. Different abnormal and normal electrocardiographic signals are tested to evaluate this approach from MIT/BIH arrhythmia database, by artificially adding white Gaussian noises with variation of 5 dB, 10 dB and 15 dB. Simulation results illustrate that the proposed system has good performance in various noise level and obtains better visual quality compared with other methods.

Online publication date: Wed, 23-Oct-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com