Tree-based text stream clustering with application to spam mail classification
by Phimphaka Taninpong; Sudsanguan Ngamsuriyaroj
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 10, No. 4, 2018

Abstract: This paper proposes a new text clustering algorithm based on a tree structure. The main idea of the clustering algorithm is a sub-tree at a specific node represents a document cluster. Our clustering algorithm is a single pass scanning algorithm which traverses down the tree to search for all clusters without having to predefine the number of clusters. Thus, it fits our objectives to produce document clusters having high cohesion, and to keep the minimum number of clusters. Moreover, an incremental learning process will perform after a new document is inserted into the tree, and the clusters will be rebuilt to accommodate the new information. In addition, we applied the proposed clustering algorithm to spam mail classification and the experimental results show that tree-based text clustering spam filter gives higher accuracy and specificity than the cobweb clustering, naïve Bayes and KNN.

Online publication date: Wed, 03-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email