Haphazard, enhanced haphazard and personalised anonymisation for privacy preserving data mining on sensitive data sources
by M. Prakash; G. Singaravel
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 13, No. 4, 2018

Abstract: Privacy preserving data mining is a fast growing new era of research due to recent advancements in information, data mining, communications and security technologies. Government agencies and many other non-governmental organisations often need to publish sensitive data that contain information about individuals. The important problem is publishing data about individuals without revealing sensitive information about them. A breach in the security of a sensitive data may expose the private information of an individual, or the interception of a private communication may compromise the security of a sensitive data. The objective of the research is to publish data without revealing the sensitive information of individuals, at the same time the miner need to discover non-sensitive knowledge. To achieve the above objective, haphazard anonymisation, enhanced haphazard anonymisation and personalised anonymisation are proposed for privacy and utility preservation. The performances are evaluated based on vulnerability to attacks, efficiency and data utility.

Online publication date: Wed, 17-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com