Topical document clustering: two-stage post processing technique
by Poonam Goyal; N. Mehala; Divyansh Bhatia; Navneet Goyal
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 10, No. 2, 2018

Abstract: Clustering documents is an essential step in improving efficiency and effectiveness of information retrieval systems. We propose a two-phase split-merge (SM) algorithm, which can be applied to topical clusters obtained from existing query-context-aware document clustering algorithms, to produce soft topical document clusters. The SM is a post-processing technique which combines the advantages of document and feature-pivot topical document clustering approaches. The split phase splits the topical clusters by relating them to the topics obtained by disambiguating web search results, and converts them into homogeneous soft clusters. In the merge phase, similar clusters are merged by feature-pivot approach. The SM is tested on the outcome of two hierarchical query-context aware document clustering algorithms on different datasets including TREC session-track 2011 dataset. The obtained topical-clusters are also updated by an incremental approach with the progress in the data stream. The proposed algorithm improves the quality of clustering appreciably in all the experiments conducted.

Online publication date: Sun, 24-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email