A two-phase local search algorithm for the ordered clustered travelling salesman problem
by Abdullah Alsheddy
International Journal of Metaheuristics (IJMHEUR), Vol. 7, No. 1, 2018

Abstract: The ordered clustered travelling salesman problem (OCTSP) is an extension of the classical travelling salesman problem where the set of vertices is partitioned into clusters with a prespecified order. The objective is to find a minimum cost Hamiltonian tour such that the vertices in any cluster are visited contiguously and the clusters are visited in the given order. This paper proposes a two-phase approach using the 2-Opt heuristic and the guided local search (GLS) metaheuristic for obtaining approximate solutions of high-quality to the OCTSP. The first phase attempts to find an optimal Hamiltonian cycle for each cluster. The resulted cycles will be concatenated in the second phase, which then focuses on finding an optimal Hamiltonian cycle for the OCTSP. Computational results confirm the effectiveness of the proposed approach in terms of solution quality and computational time, in comparison with a hybrid genetic algorithm (HGA) on symmetric instances obtained from the travelling salesman problem instance library (TSPLIB).

Online publication date: Sun, 20-May-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Metaheuristics (IJMHEUR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com