Efficient multi-receiver identity-based signcryption from lattice assumption
by Xiaojun Zhang; Chunxiang Xu; Jingting Xue
International Journal of Electronic Security and Digital Forensics (IJESDF), Vol. 10, No. 1, 2018

Abstract: Signcryption is a public-key cryptographic primitive which combines the functions of public-key encryption and digital signature into a single logical step at low computational and communication costs. While multi-receiver signcryption is suited for a situation where a sender wants to send a signcrypted message to multiple receivers in a confidential and authenticated way. Due to this attractive property, recently, multi-receiver signcryption plays an important role in some practical applications such as virtual conference as well as authenticated mail transferring. In this paper, we present an efficient multi-receiver identity-based signcryption (MIBSC) scheme from lattice assumption which is believed to resist quantum computer attacks. The proposed scheme is provably secure in the random oracle model, which has the indistinguishability against chosen ciphertext attacks under the hardness of learning with errors (LWE), and existentially unforgeability against chosen message attacks under the small integer solution assumption (SIS). Moreover, we also compare our MIBSC scheme with existing schemes from performance efficiency and security, the result shows that our proposed scheme is more efficient and more secure. In particular, our scheme can be properly applied in the post-quantum communication environments.

Online publication date: Tue, 09-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electronic Security and Digital Forensics (IJESDF):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com