Surface catalysed PCDD/F formation from precursors - high PCDF yield does not indicate de novo mechanism!
by Shadrack Nganai; Slawo Lomnicki
International Journal of Environment and Pollution (IJEP), Vol. 61, No. 3/4, 2017

Abstract: We report results on PCDD/F formation over iron (III) oxides catalysts for a mixture of 2-monochlorophenol (2-MCP) and 1,2-dichlorobenzene (1,2-DCBz) for both oxidation and pyrolysis. Competitive adsorption between chlorinated benzenes and chlorinated phenols affects the transformation of these precursors and plays a crucial role in the PCDD/F formation in mixed MCP/1,2-DCBz-feed streams. Comparing the integrated PCDD and PCDF yields, it becomes apparent that with decreasing 2-MCP content in the feed stream the PCDF yield first rises and then levels off, at ~0.4% for pyrolytic and at ~0.6% for oxidative conditions. Present results further confirm that the PCDD/PCDF-ratio cannot be used to validate the de novo pathway nor can it be used as an indicator of de novo synthesis in incinerators. In fact, the PCDD/PCDF-ratio is strongly dependent on the relative concentration of these two precursors in the reacting stream, i.e., chlorinated benzenes vs. chlorinated phenols.

Online publication date: Wed, 01-Nov-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email