Generation of rotational flow for formation of spheroids by using microfluidic and dielectrophoretic hybrid device
by Masaru Kojima; Mitsuhiro Horade; Hirochika Takai; Kenichi Ohara; Tamio Tanikawa; Kazuto Kamiyama; Yasushi Mae; Tatsuo Arai
International Journal of Mechatronics and Automation (IJMA), Vol. 5, No. 4, 2016

Abstract: Toroidal-like sheroids are important in the field of tissue engineering. However, the formation processes of toroidal-like spheroids may not be considered efficient, as most of them are manual. In this paper, we suggest the possibility and effectiveness of applying microfluidics for formation of toroidal-like spheroids. The concept of our method is that cells are compressed by rotational flow in a microchannel and dielectrophoretic force. Some types of microchannels that can generate rotational flow were designed and were analysed with flow analysis software. A superior microchannel was fabricated, and a flow of NIH3T3 cell suspension was supplied to the channel. As the flow rate was changed, the cells were rotated in the microchannel according to our concept, and approximately 30% of them remained in the channel. This result supports our concept: toroidal-like spheroids can be formed under the influence of forces of rotational flow and dielectrophoresis.

Online publication date: Sun, 21-May-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mechatronics and Automation (IJMA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email