A graph-based unsupervised N-gram filtration technique for automatic keyphrase extraction
by Niraj Kumar; Kannan Srinathan; Vasudeva Varma
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 8, No. 2, 2016

Abstract: In this paper, we present a novel N-gram (N> = 1) filtration technique for keyphrase extraction. To filter the sophisticated candidate keyphrases (N-grams), we introduce the combined use of: 1) statistical feature (obtained by using weighted betweenness centrality scores of words, which is generally used to identify the border nodes/edges in community detection techniques); 2) co-location strength (calculated by using nearest neighbour Dbpedia texts). We also introduce the use of N-gram (N> = 1) graph, which reduces the bias effect of lower length N-grams in the ranking process and preserves the semantics of words (phraseness), based upon local context. To capture the theme of the document and to reduce the effect of noisy terms in the ranking process, we apply an information theoretic framework for key-player detection on the proposed N-gram graph. Our experimental results show that the devised system performs better than the current state-of-the-art unsupervised systems and comparable/better than supervised systems.

Online publication date: Wed, 22-Jun-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com