Lane departure assistance based on balanced longitudinal slip ratio differential braking control
by Zhi Huang; Yiwan Wu
International Journal of Vehicle Safety (IJVS), Vol. 8, No. 3, 2015

Abstract: This paper presents studies on differential braking-based Lane Departure Assistance System (LDAS). The dynamic threshold of Time to Lane Crossing (TLC), determined by vehicle heading error, speed, road adhesion and reaction time of human-machine system, is studied to activate driving assistance. Based on 2-DOF reference vehicle model and driver preview model, the desired yaw rate to avoid lane departure is calculated. To avoid loss of lateral stability during braking, strategies for the distribution of braking force are developed based on balanced longitudinal slip ratio, which aim to limit the slip ratio on all wheels. The Hardware in Loop (HIL) test bench is established to evaluate the rapid prototyping of LDAS. Results show that the proposed methods can confine the vehicle in lane effectively with lateral stability maintained and operate robustly, benefiting from timely assistance, model-independent control algorithm, and small and balanced slip ratio.

Online publication date: Fri, 24-Jul-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Safety (IJVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email