Vote prediction by iterative domain knowledge and attribute elimination
by Anthony Scime, Gregg R. Murray
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 2, No. 2, 2007

Abstract: Data mining the American National Election Study (ANES), a rich but disparate source of information about Americans' vote choices, is the focus of this research. Specifically, we use data mining classification to construct a decision tree to select important predictors of the vote from the more than 900 items that compose the ANES. We use an iterative domain expert and data mining process to identify a limited number of survey questions intended to predict for which party an individual will vote in a presidential election or whether that individual will vote at all.

Online publication date: Mon, 04-Jun-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email