Three level weight for latent semantic analysis: an efficient approach to find enhanced semantic themes
by Pooja Kherwa; Poonam Bansal
International Journal of Knowledge and Learning (IJKL), Vol. 16, No. 1, 2023

Abstract: Latent semantic analysis is a prominent semantic themes detection and topic modelling technique. In this paper, we have designed a three-level weight for latent semantic analysis for creating an optimised semantic space for large collection of documents. Using this novel approach, an efficient latent semantic space is created, in which terms in documents comes closer to each other, which appear far away in actual document collection. In this approach, authors used two dataset: first is a synthetic dataset consists of small stories collected by the authors; second is benchmark BBC-news dataset used in text mining applications. These proposed three level weight models assign weight at term level, document level, and at a corpus level. These weight models are known as: 1) NPC; 2) NTC; 3) APC; 4) ATC. These weight models are tested on both the dataset, compared with state of the art term frequency and it has shown significant improved performances in term set correlation, document set correlation and has also shown highest correlation in semantic similarity of terms in semantic space generated through these three level weights. Our approach also shows automatic context clustering generated in dataset through three level weights.

Online publication date: Wed, 30-Nov-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge and Learning (IJKL):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com