Nonlinear gradient-based feature selection for precise prediction of diseases
by Sadaf Kabir; Leily Farrokhvar
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 14, No. 3, 2022

Abstract: Developing accurate predictive models can profoundly help healthcare providers improve the quality of their services. However, medical data often contain several variables, and not all the data equally contribute towards the prediction. The existence of irrelevant and redundant features in a dataset can unnecessarily increase computational cost and complexity while deteriorating the performance of the predictive model. In this study, we employ the gradient-based prediction attribution as a general tool to identify important features in differentiable predictive models, such as neural networks (NN) and linear regression. Built upon this approach, we analyse single-stage and multi-stage scenarios for feature selection using ten medical datasets. Through extensive experiments, we demonstrate that the combination of the gradient-based approach with NN provides a powerful nonlinear technique to identify important features contributing to the prediction. In particular, nonlinear gradient-based feature selection achieves competitive results or significant improvements over previously reported results on all datasets.

Online publication date: Mon, 05-Sep-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email