Real-time machine learning in embedded software and hardware platforms
by David Mulvaney, Ian Sillitoe, Erick Swere, Yang Wang, Zhenhuan Zhu
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 2, No. 2/3, 2007

Abstract: This paper describes on-going research work into real-time machine learning using embedded software and reconfigurable hardware. The main focus of the work is to develop real-time incremental learning methods particularly targeted at demonstration in mobile robot environments. Three main areas are described. The first represents reactive robot navigation knowledge using a novel frequency table technique whose memory requirement is known a priori. The second area investigates a Genetic Algorithm (GA) method that combines planning and reactive approaches to allow navigation to proceed even in the face of time constraints. In the third area we are developing novel hardware-based machine learning systems suitable for implementation in reconfigurable platforms.

Online publication date: Mon, 19-Feb-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email