A reduced hardware complexity algorithm with improved outage probability for 5G communication system
by Ashu Taneja; Nitin Saluja
International Journal of Communication Networks and Distributed Systems (IJCNDS), Vol. 28, No. 1, 2022

Abstract: In this paper, a 5G mobile communication system is considered with cooperative environment. The mobile and base-station node communicate with each other through a number of amplify-and-forward (AF) relays. The users have multiple antennas while each relay has a single antenna. The radio-frequency (RF) transceiver chain associated with each antenna element leads to increased hardware complexity. This challenge is reduced by efficient utilisation of RF front ends in the proposed wireless system. The paper proposes an RF chain selection technique which enables the selection of RF front end with maximum received signal-to-noise-ratio (SNR). The outage probability is derived for proposed mobile communication system. Further, system ergodic capacity, energy efficiency and average end-to-end SNR are evaluated. As compared to the conventional random selection approach, this algorithm aims to achieve higher capacity and higher average end-to-end-SNR. At 16 dB SNR, system capacity improves by 52% with proposed algorithm rather than conventional random selection.

Online publication date: Thu, 13-Jan-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Communication Networks and Distributed Systems (IJCNDS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com