Influence of Al, Fe, and Cu on the microstructure, diffused reflectance, THz, and dielectric properties for ZnTiO3 nanocrystalline
by Ahmed M. Bakr; Ali B. Abou Hammad; Ahmed R. Wassel; Amany M. El Nahrawy; A.M. Mansour
International Journal of Materials Engineering Innovation (IJMATEI), Vol. 12, No. 2, 2021

Abstract: Structural, diffused reflectance, THz, and dielectric features of perovskite ZnTiO3 (doped with 5 mol.% of Al, Cu, and Fe) prepared using the sol-gel and calcined at 800°C have been investigated. The Al, Cu, and Fe can replace the titanium ions and form sols solutions in the ZnTiO3 phase, and the spectroscopic and dielectric of the ZnTiO3 peaks changed with the dopant addition. X-ray diffraction patterns elucidate the creation of the ZnTiO3 rhombohedral phase, while the introduction of Al and Fe within the ZnTiO3 structure is composed of two phases identified as cubic phase Zn2TiO4 structure and TiO2 besides the rhombohedral of zinc-titanate. The various dopants induce a surface morphology modification observed by SEM. Diffusive reflection for ZnTiO3 doped Al, Cu, and Fe indicated higher transparent over the wavelength 400 nm which making them a choice as excellent transparent semiconductor oxides for different optoelectronic applications. The electric modulus has the least values nearly reach zero at low frequency denoting that a neglected contribution of electrode polarisation to the total polarisation. THz and dielectric performance of a material is closely related to its composition and microstructure.

Online publication date: Fri, 11-Jun-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials Engineering Innovation (IJMATEI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com