Low power DNA protein sequence alignment using FSM state transition controller
by Sancarapu Nagaraju; Penubolu Sudhakara Reddy
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 34, No. 2, 2020

Abstract: In this paper we proposed an efficient computation technique for DNA patterns on reconfigurable hardware (FPGAs) platform. The paper also presents the results of a comparative study between existing dynamic and heuristic programming methods of the widely-used Smith-Waterman pair-wise sequence alignment algorithm with FSM-based core implementation. Traditional software implication-based sequence alignment methods can not meet the actual data rate requirements. Hardware-based approach will give high scalability and one can process parallel tasks with a large number of new databases. This paper explains finite state machine (FSM)-based core processing element to classify the protein sequence. In addition, we analyse the performance of bit-based sequence alignment algorithms and present the inner stage pipelined field programmable gate array (FPGA) architecture for sequence alignment implementations. Here, synchronised controllers are used to carry out parallel sequence alignment. The complete architecture is designed to carry out parallel processing in hardware, with FSM-based bit wised pattern comparison with scalability as well as with a minimum number of computations. Finally, the proposed design proved to be high performance and its efficiency in terms of resource utilisation is proved on FPGA implementation.

Online publication date: Thu, 05-Nov-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com