ComRank: community-based ranking approach for heterogeneous information network analysis and mining
by Phu Pham; Phuc Do
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 17, No. 4, 2020

Abstract: In this paper, we propose the ComRank model to address this problem of ranking a specific typed of object, over the generated topic-driven communities in the information networks. The topic-driven communities are generated by applying the latent topic modelling of LDA. Our proposed ComRank model is directly generated ranking results for specific typed object in the different network communities. We apply our approach to construct the scholastic recommendation system, which support the researchers to find the appropriate citations or potential authors for cooperating while doing scientific researches. The ComRank model is tested with the real-world dataset of DBLP bibliographic network. The experimental results demonstrated that our proposed model can generate the meaningful ranking results within detected topic-driven communities.

Online publication date: Fri, 16-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email