A recommendation algorithm for point of interest using time-based collaborative filtering
by Jun Zeng; Xin He; Feng Li; Yingbo Wu
International Journal of Information Technology and Management (IJITM), Vol. 19, No. 4, 2020

Abstract: Location-based social networks (LBSNs) make it possible for people to share their visited places by uploading the check-in information. To improve the efficiency of recommendation algorithm, researchers introduce check-in data into point of interest (POI) recommendation to help users find new and interesting place. However, some researches ignore the signification of time factor for POI recommendation in LBSNs. In this paper, we propose a time-based collaborative filtering algorithm according to the similarity between users which combines the global similarity during a long period and local similarity within a short time interval. The experimental results show that the method we proposed can get more accurate recommendation.

Online publication date: Mon, 12-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information Technology and Management (IJITM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com