Location-based personalised recommendation systems for the tourists in India
by Madhusree Kuanr; Sachi Nandan Mohanty
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 17, No. 3, 2020

Abstract: This study examines the collaborative filtering in recommender system by categorising users according to their choices of place, food, local item purchase, etc. The proposed system will store the opinions of the local users about the sites, foods and products for purchase available in those sites. It uses collaborative filtering technique to find the similar users to a given querying user. The system recommends the best sites along with good foods and products available on those sites according to the recent data. Two hundred (male = 110, female = 90) married individuals from Bhubaneswar, Odisha (India) participated in this survey. Cosine similarity is used in the proposed system to find the similar users of a given input query user. The results revealed that collaborative filtering is the more reliable technique for personalised recommender systems. Experimental results show performance of the proposed system in terms of precision, recall and F-measure values.

Online publication date: Thu, 03-Sep-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com