Intelligent model for diabetic retinopathy diagnosis: a hybridised approach
by Santosh Nagnath Randive; Ranjan K. Senapati; Amol D. Rahulkar
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 16, No. 2, 2020

Abstract: As diabetic retinopathy (DR) is considered as most common infectious diseases in humans, more researches have been already proposed under various aspects, yet the attainment of accurate DR detection seems to be an issue. This paper intends to develop an innovative contribution by introducing a novel DR detection model, and further the proposed model tells the severity of retinopathy from the given input fundus image. The proposed model comprises of stages such as Segmentation, Feature Extraction and Classification. Here, Active contour model is used for segmentation; also the GLCM and GLRM features are extracted during feature extraction process. Moreover, the classifier called neural network (NN) is used for classification purpose. As a main contribution, the extracted features (feature selection), and weight in NN model are optimally chosen by a new hybridised algorithm called whale with particle swarm optimisation (WP), which compares its performance over other conventional methods for analysis purpose.

Online publication date: Mon, 13-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email