Application of genetic algorithm for simultaneous optimisation of HEV component sizing and control strategy
by Morteza Montazeri-Gh, Amir Poursamad
International Journal of Alternative Propulsion (IJAP), Vol. 1, No. 1, 2006

Abstract: This paper describes a methodological approach for the simultaneous optimisation of Hybrid Electric Vehicle (HEV) component sizing and control strategy using Genetic Algorithm (GA). In this approach, using a parallel HEV configuration and an Electric Assist Control Strategy (EACS), the optimisation problem is formulated. The whole set of sizing and control variables is then encoded as the chromosomes. The multi-objective target is also defined to minimise the Fuel Consumption (FC) and emissions. In addition, the PNGV performance requirements are considered as constraints. Finally, to evaluate the objective function, three driving cycles, ECE-EUDC, FTP and TEH-CAR, are employed. The simulation results obtained in this study show that the approach is effective, resulting in improvement of the objective value and FC.

Online publication date: Tue, 29-Aug-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Alternative Propulsion (IJAP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email