Title: AC conductivity and dielectric spectra study of a blended solid polymer electrolyte

Authors: Avirup Das; Awlendra Kumar Thakur

Addresses: School of Advance Sciences and Language, VIT Bhopal University, Madhya Pradesh, India ' Department of Physics, Indian Institute of Technology Patna, Bihar, India

Abstract: Conductivity and dielectric spectra of a polymer blend electrolyte have been investigated in the temperature range ±20°C. AC conductivity data has been fitted with Jonscher's power law to confirm the hopping nature of ions. Further, the dielectric property has been studied by using the modulus and loss tangent spectra. Activation energy has been calculated from DC conductivity and loss tangent data. A similarity between the activation energy from DC conductivity and dielectric data indicates identical conducting species was involved in ion migration. Almond-West formalism has been applied to calculate the effective carrier concentration in the sample. Temperature variation of cation concentration shows a systematic decrease at sub-ambient temperature. A systematic change in DC conductivity, hopping frequency, and cation concentration at sub-ambient temperature indicates trapping of effective cation within the polymer matrix at sub-ambient temperature.

Keywords: polymer blend; Almond-West formalism; dielectric spectroscopy; AC conductivity.

DOI: 10.1504/IJMATEI.2018.10015698

International Journal of Materials Engineering Innovation, 2018 Vol.9 No.3, pp.208 - 217

Received: 18 Oct 2017
Accepted: 05 Feb 2018

Published online: 09 Nov 2018 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article