You can view the full text of this article for free using the link below.

Title: Deterministic risk analysis smart health model for heart ailments using neural networks

Authors: Kartik Bhanot; Reshub Kr. Nigam

Addresses: Information and Communication Technology Department, Manipal Institute of Technology, Manipal University, Karnataka-576104, India ' Information and Communication Technology Department, Manipal Institute of Technology, Manipal University, Karnataka-576104, India

Abstract: Cardiovascular diseases are the leading cause of death all across the globe, much more than all forms of cancer combined. In order to study these heart ailments and stress levels of patients, electrocardiogram (ECG) data is used. The challenge is to develop a risk analysis model that can determine the risk or the possibility of a heart attack based on the current state of ECG data. In the current paper, authors have developed a deterministic risk analysis to determine the level of risk that a person may have for a heart attack with an average accuracy of 92.57%. Neural networks have been used extensively for training the developed model for analysis purposes. The data has been taken from (Massachusetts Institute of Technology - Boston's Beth Israel Hospital) MIT-BIH Long-term ECG Database and MIT-BIH Arrhythmia Database using Rapid Miner as the platform. The database is divided into equitable data from long-term ECG as well as from arrhythmia patients and labels is assigned to them so as to maintain the legitimacy of the whole dataset.

Keywords: electrocardiograms; ECG signals; neural networks; RapidMiner; smart sensors; e-healthcare; electronic healthcare; QRS complex; data analysis; decision tree; risk assessment; heart attacks; stress levels; heartrate variables; Pam Tomkins technique; smart health models; cardiovascular disease; arrhythmia.

DOI: 10.1504/IJTMCP.2017.082108

International Journal of Telemedicine and Clinical Practices, 2017 Vol.2 No.1, pp.63 - 73

Available online: 07 Feb 2017 *

Full-text access for editors Access for subscribers Free access Comment on this article