Title: QSAR study of 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using genetic algorithms and artificial neural networks

Authors: Houda Labjar; Mohamed Kissi; Rokaya Mouhibi; Omar Khadir; Hassan Chaair; Mohamed Zahouily

Addresses: Laboratoire de génie des procédés et environnement, Faculté des Sciences et Techniques, Université Hassan II-Casablanca, BP. 146, 20650 Mohammedia, Morocco ' Laboratoire d'informatique et de mathématiques et leurs applications, Faculté des Sciences, Université Chouaib Doukkali, BP. 20, Route Ben Maachou, 24000 El Jadida, Morocco ' Laboratoire de Catalyse, Chimiométrie et Environnement (URAC24), Faculté des Sciences et Techniques, Université Hassan II-Casablanca, BP. 146, 20650 Mohammedia, Morocco ' Laboratoire de Mathématiques, Cryptographie et Mécanique, Faculté des Sciences et Techniques, Université Hassan II-Casablanca, BP. 146, 20650 Mohammedia, Morocco ' Laboratoire de génie des procédés et environnement, Faculté des Sciences et Techniques, Université Hassan II-Casablanca, BP. 146, 20650 Mohammedia, Morocco ' Laboratoire de Catalyse, Chimiométrie et Environnement (URAC24), Faculté des Sciences et Techniques, Université Hassan II-Casablanca, BP. 146, 20650 Mohammedia, Morocco

Abstract: Quantitative Structure Activity Relationships (QSAR) were studied for a series of 54 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas derivatives by means of Multiple Linear Regression (MLR), Genetic Algorithm (GA) and Artificial Neural Network (ANN) techniques. The values of pIC50 (dose of compound required to reduce the proliferation of normal uninfected cells by 50%) of the studied compounds were correlated with the descriptors or variables encoding the chemical structures. An approach that combines GA and MLR (GA-MLR) was used to select the pertinent descriptors to explain the activity pIC50. The descriptors revealed by GA-MLR were used to characterise the non-linear aspect in the activity parameter. The results obtained from this study indicate that the activity pIC50 is strongly dependent on the highest occupied molecular orbital, molecular weight, molecular volume, molar refractivity and LogP parameters.

Keywords: QSAR; quantitative structure activity relationships; genetic algorithms; artificial neural networks; ANNs; CCR5; multiple linear regression; 1-(3, 3-diphenylpropyl)-piperidinyl amides; ureas; molecular orbital; molecular weight; molecular volume; molar refractivity; LogP parameters; human immunodeficiency virus; HIV; acquired immune-deficiency syndrome; AIDS; bioinformatics.

DOI: 10.1504/IJBRA.2016.077123

International Journal of Bioinformatics Research and Applications, 2016 Vol.12 No.2, pp.116 - 128

Accepted: 07 Dec 2015
Published online: 19 Jun 2016 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article