Title: A human-inspired framework for bipedal robotic walking design

Authors: Ryan W. Sinnet; Shu Jiang; Aaron D. Ames

Addresses: Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA ' Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA ' Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Abstract: This work seeks virtual constraints, or outputs, that are intrinsic to human walking and utilises these outputs to construct controllers which produce human-like bipedal robotic walking. Beginning with experimental human walking data, human outputs are sought, i.e., functions of the kinematics of the human over time, which provides a low-dimensional representation of human walking. It will be shown that, for these outputs, humans act like linear mass-spring-dampers; this yields a time representation of the human outputs through canonical walking functions. Combining these formulations leads to human-inspired controllers that, when utilised in an optimisation problem, provably result in robotic walking that is as 'human-like' as possible. This human-inspired approach is applied to multiple human output combinations, from which it is determined which output combination results in the most human-like walking for a robotic model with mean human parameters.

Keywords: bipedal robots; robotic walking; human walking; nonlinear control; hybrid systems; walking robots; legged locomotion; robot control; kinematics.

DOI: 10.1504/IJBBR.2014.059275

International Journal of Biomechatronics and Biomedical Robotics, 2014 Vol.3 No.1, pp.20 - 41

Received: 08 May 2021
Accepted: 12 May 2021

Published online: 12 Feb 2014 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article